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1 Introduction

Recently there have been works on dynamical spacetime-dependent solutions of super-

gravity involving branes which are of cosmological interest. The dynamical solutions of

supergravity have a number of important applications. In the original version [1], one

considers a spacetime-dependent brane solution with five-form flux and gravity in the ten-

dimensional type IIB supergravity. In the presence of the spacetime dependence in the

background metric, one finds, even for the general black p-brane system [2–4], that the
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structure of warp factor which depends on the space and time is different from the usual

“product type” ansatz [5–8].

In addition to spacetime-dependent brane solutions in higher-dimensional supergravi-

ties, there are several analyses of lower-dimensional effective theories after compactifying

the internal space [9–12]. The same considerations also apply to the string theories which

are of much interest as an approach to behavior of the early universe. However, it has

been pointed out that the four-dimensional effective theories for warped compactifica-

tion of ten-dimensional type IIB supergravity may not provide solutions in the original

higher-dimensional theories [9, 13]. This caution can be generalized in various p-brane

solutions [14] and intersecting branes as shown in this paper. This possible inconsistency

has been known for some time, but it should be kept in mind in the recent study of moduli

in higher-dimensional theories using four-dimensional effective theories.

Another significant fact is that more general dynamical brane solutions arise if the

gravity is coupled not only to single gauge field but to several combinations of scalars and

forms as intersecting brane solutions in the supergravity. The intersecting brane solutions

were originally found by Güven in eleven-dimensional supergravity [15]. After that, many

authors investigated related solutions such as intersecting membranes, and they constructed

static new solutions of intersecting branes [16–25]. For a nice review, see [26]. Further-

more, a different class of dynamical brane solutions which depend on both time and space

coordinates have been found in [27], and special intersecting dynamical solutions of D4-D8

are given in [14].

In the present paper, we give general dynamical solutions of intersecting brane systems

in D-dimensional theories, which may have more general applications to cosmology and

black hole physics, and discuss their implications to lower-dimensional effective theories.

We show that these solutions give FRW universe if we regard the homogeneous and isotropic

part of the brane world-volumes as our spacetime, whereas they give black hole solutions in

FRW universe if we regard the bulk transverse space as our spacetime. We also show that

in the former case, Lorentz invariance may appear broken in our four-dimensional world

though more elaborate solutions may be necessary to obtain realistic models. Although our

solutions contain general intersecting brane solutions including D-branes and NS-branes,

we discuss M-branes mainly in our following discussions for simplicity. Other branes can

be obtained by dimensional reductions and T-duality.

The paper is organised as follows. In section 2, we first consider intersecting p-brane

systems in D-dimensions and derive general dynamical intersecting brane solutions under

certain metric ansätze. In section 3, focusing on intersecting M-brane systems in the eleven-

dimensional supergravity, we give a classification of dynamical intersecting brane solutions

without M-wave and Kaluza-Klein(KK)-monopole, and discuss spacetime structure of the

intersecting branes. A complete classification of these solutions is given in appendix B.

In section 4, applications of these solutions to cosmology and black hole physics are dis-

cussed. In section 5, dynamical intersecting brane solutions involving M-wave and KK-

monopole are discussed together with their applications to cosmology and black holes. In

section 6, we discuss lower-dimensional effective theories for the warped compactification of

the brane systems in eleven-dimensional supergravity and discuss that Lorentz invariance
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in our spacetime may appear broken in our solutions. Section 7 is devoted to concluding

remarks. Dynamical solutions of single branes are summarized in appendix A, and the

complete classification of intersecting M-branes are given in appendix B. Solutions with

M-wave and KK-monopole are given in appendix C, and their intersections with M-branes

are given in appendix D.

2 Solutions of dynamical intersecting branes

In this section, we consider dynamical intersecting brane systems in D dimensions. We

write down the Einstein equations under certain metric ansätze, which are a generalization

of those of known static intersecting p-brane solutions. We then solve the Einstein equa-

tions and present the solutions explicitly. To compare the results of intersecting p-brane

with those of single p-branes, we summarize the dynamical solutions of single p-branes in

appendix A.

Let us consider a gravitational theory with the metric gMN , dilaton φ, and anti-

symmetric tensor fields of rank (pI + 2), where I denotes the type of the corresponding

branes. The action for the intersecting-brane system is written as

S =
1

2κ2

∫

[

R ∗ 1D − 1

2
dφ ∧ ∗dφ −

∑

I

1

2(pI + 2)!
ecIφF(pI+2) ∧ ∗F(pI+2)

]

, (2.1)

where κ2 is the D-dimensional gravitational constant, ∗ is the Hodge dual operator in the

D-dimensional spacetime, cI is a constant given by

c2
I = 4 − 2(pI + 1)(D − pI − 3)

D − 2
. (2.2)

The expectation values of fermionic fields are assumed to be zero. The action (2.1) describes

the bosonic part of D = 11 or D = 10 supergravities; we simply drop φ and put cI = 0

and pI = 2 for D = 11, whereas we set cI = −1 for the NS-NS 3-form and cI = 1
2 (3 − pI)

for forms coming from the R-R sector for D = 10. There may be Chern-Simons terms in

the action, but they are irrelevant in our following search for the orthogonally intersecting

solutions. To describe more general supergravities in lower dimensions, we should include

several scalars as in refs. [2, 28], but for simplicity we disregard this complication in this

paper.

The field equations are given by

RMN =
1

2
∂Mφ∂Nφ +

1

2

∑

I

1

(pI + 2)!
eǫIcIφ

×
[

(pI + 2)FMA2···ApI+2FN
A2···ApI+2 − pI + 1

D − 2
gMNF 2

(pI+2)

]

, (2.3a)

�φ =
1

2

∑

I

ǫIcI

(pI + 2)!
ecIφF 2

(pI+2), (2.3b)

d
(

ecIφ ∗ F(pI+2)

)

= 0, (2.3c)

where � is the D-dimensional D’Alembertian.
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To solve the field equations, we assume the D-dimensional metric of the form

ds2 = A(t, z)uij(z)dzidzj − B(t, z)dt2 +

p
∑

α=1

C(α)(t, z)(dxα)2, (2.4)

where uij(z) is the metric of the (D − p − 1)-dimensional Z space which depends only on

the (D − p − 1)-dimensional coordinates zi. A, B and C(α) are given by

A =
∏

I

[hI(t, z)]aI , B =
∏

I

[hI(t, z)]bI , C(α) =
∏

I

[hI(t, z)]c
(α)
I . (2.5)

where the parameters aI , bI and c
(α)
I are defined by

aI =
pI + 1

D − 2
, bI = −D − pI − 3

D − 2
, c

(α)
I =

{

bI for α ∈ I

aI for α ∈/I , (2.6)

and hI(t, z), which depends on t and zi, is a straightforward generalization of the harmonic

function associated with a brane I in a static brane system [16].

We also assume that the scalar field φ and the gauge field strength F(p+2) are given by

eφ =
∏

I

h
ǫIcI/2
I , F(pI+2) = d(h−1

I ) ∧ Ω(XI), (2.7)

where XI is the space associated with a brane I, and ǫI is defined by

ǫI =

{

+ for the electric brane

− for the magnetic brane
, (2.8)

and Ω(XI) = dt ∧ dxp1 ∧ · · · ∧ dxpI is the volume (pI + 1)-form. The field strength in (2.7)

is written for electric ansatz, but the final results are basically the same for magnetic

ansatz. In what follows, we write our formulae mainly for electric case with comments on

modifications for magnetic case.

Let us assume [16]

A(D−p−3) B
p
∏

α=1

C(α) = 1 ,

B−1
∏

α∈I

(

C(α)
)−1

eǫIcIφ = h2
I . (2.9)

– 4 –
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The Einstein equations (2.3a) then reduce to

1

2

∑

I,I′

[MII′ − 2δII′ − 2 (aI − δII′aI′)] ∂t ln hI∂t ln hI′

+
∑

I

(2aI − bI)h
−1
I ∂2

t hI − 2
∏

I

h−1
I

∑

I′

bI′h
−1
I′ △ZhI′ = 0, (2.10a)

2
∑

I

h−1
I ∂t∂ihI +

∑

I,I′

(MII′ − 2δII′) ∂t ln hI∂i lnhI′ = 0, (2.10b)

∏

J ′

h
−bJ′

J ′

∑

γ

∏

J

h
c
(γ)
J

J

∑

I

[

c
(γ)
I h−1

I ∂2
t hI −

(

c
(γ)
I ∂t ln hI −

∑

I′

c
(γ)
I′ ∂t ln hI′

)

∂t lnhI

]

−
∏

J ′

h
−aJ′

J ′

∑

γ

∏

J

h
c
(γ)
J

J

∑

I

c
(γ)
I h−1

I △ZhI = 0, (2.10c)

Rij(Z) +
D − 2

2
uij

∏

J

hJ

∑

I

[

aIh
−1
I ∂2

t hI +

{

aI∂t ln hI −
∑

I′

aI′∂t ln hI′

}

∂t ln hI

]

−1

2
uij

∑

I

h−1
I aI△ZhI −

1

4

∑

I,I′

(MII′ − 2δII′) ∂i ln hI∂j lnhI′ = 0, (2.10d)

where Rij(Z) is the Ricci tensor of the metric uij, and MII′ is given by

MII′ ≡ bIbI′ +
∑

α

c
(α)
I c

(α)
I′ + (D − p − 3)aIaI′ +

1

2
ǫIǫI′cIcI′ . (2.11)

Let us consider eq. (2.10b). We can rewrite this as

∑

I,I′

[

MII′ + 2δII′
∂t∂i ln hI

∂t ln hI∂i ln hI

]

∂t ln hI∂i ln hI′ = 0. (2.12)

In order to satisfy this equation for arbitrary coordinate values and independent functions

hI , the second term in the square bracket must be constant:

∂t∂i ln hI

∂t ln hI∂i ln hI
= kI . (2.13)

Then in order for (2.12) to be satisfied identically, we must have

MII′ + 2kIδII′ = 0. (2.14)

Using eqs. (2.2), (2.6) and (2.11), we get

MII = (pI + 1)b2
I + (p − pI)a

2
I + (D − p − 3)a2

I +
1

2
c2
I

= 2. (2.15)

This means that the constant kI in eq. (2.14) is kI = −1, namely

MII′ = 2δII′ . (2.16)

– 5 –
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It then follows from eq. (2.13) that

∂i∂t[hI(t, z)] = 0 . (2.17)

As a result, the warp factor hI must be separable as

hI(t, z) = KI(t) + HI(z) . (2.18)

For I 6= I ′, eq. (2.16) gives the intersection rule on the dimension p̄ of the intersection

for each pair of branes I and I ′ (p̄ ≤ pI , pI′) [16, 19, 29, 30]:

p̄ =
(pI + 1)(pI′ + 1)

D − 2
− 1 − 1

2
ǫIcIǫI′cI′ . (2.19)

Let us next consider the gauge field. Under the ansatz (2.7) for electric background,

we find

dF(pI+2) = h−1
I (2∂i lnhI∂j ln hI + h−1

I ∂i∂jhI)dzi ∧ dzj ∧ Ω(XI) = 0. (2.20)

Thus, the Bianchi identity is automatically satisfied. Also the equation of motion for the

gauge field becomes

d
[

e−cIφ ∗ F(pI+2)

]

= −d
[

∂ihI

{

∗Zdyi ∧ ∗XΩ(XI)
}]

= −
(

∂t∂ihIdt + △ZhIdyi
)

∧
[

∗Zdyi ∧ ∗XΩ(XI)
]

= 0, (2.21)

where ∗X, ∗Z denotes the Hodge dual operator on X(≡ ∪IXI) and Z, respectively, and we

have used eqs. (2.9). Hence we again find the condition (2.18) and

△ZhI = 0. (2.22)

We note that the roles of the Bianchi identity and field equations are interchanged for

magnetic ansatz [16, 19], but the net result is the same.

Let us finally consider the scalar field equation. Substituting the scalar field and the

gauge field in (2.7), and the warp factor (2.18) into the equation of motion for the scalar

field (2.3b), we obtain

−
∏

I′′

h
−bI′′

I′′

∑

I

ǫIcI

[

h−1
I ∂2

t KI + ∂t ln hI

∑

I′

∂t ln hI′ − (∂t ln hI)
2

]

+
∏

I′′

h
−aI′′

I′′

∑

I

h−1
I ǫIcI△ZHI = 0. (2.23)

This equation is satisfied if

∂2
t KI = 0, (2.24a)

△ZHI = 0, (2.24b)

∑

I

ǫIcI

[

∂t ln hI

∑

I′

∂t ln hI′ − (∂t ln hI)
2

]

= 0. (2.24c)

– 6 –
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eq. (2.24a) gives KI = AIt + BI , where where AI and BI are integration constants.

Eq. (2.24c) can be satisfied only if there is only one function hI depending on both zi

and t, which we denote with the subscript Ĩ, and other functions are either dependent on

zi or constant. Hence we have

KĨ = AĨ t + BĨ ,

KI = BI , (I 6= Ĩ). (2.25)

The remaining Einstein equations (2.10) now reduce to
∑

I,I′

[aI − δII′aI′ ] ∂t ln hI∂t lnhI′ = 0, (2.26a)

∑

I

[

∂t ln hI

∑

I′

∂t ln hI′ − (∂t ln hI)
2

]

= 0, (2.26b)

Rij(Z) = 0. (2.26c)

Obviously the first two sets of equations (2.26a) and (2.26b) are automatically satisfied by

our solutions in which there is only one function hĨ depending on both t and zi. Given

the set of solutions to eqs. (2.18), (2.24b), (2.25), and (2.26c), we have thus obtained

general intersecting dynamical brane solutions (2.4). For static (time-independent) case,

our solutions are consistent with the harmonic function rule [31], but are more general

with spacetime-dependent functions. Note that the internal space is not warped [9] if the

function HI is trivial.

As a special example, we consider the case

uij = δij , (2.27)

where δij is the (D− p− 1)-dimensional Euclidean metric. In this case, the solution for HI

can be obtained explicitly as

HI(z) = 1 +
∑

k

QI, k

|z − zk|D−p−3
, (2.28)

where QI, k’s are constant parameters and zk represent the positions of the branes in Z

space.1 For KĨ = 0 (AĨ = BĨ = 0), the metric describes the known static and extremal

multi-black hole solution with black hole charges QI, k [16, 19, 32].

3 Classification of dynamical intersecting M-branes

Now, we give a classification of multiple intersections of M-branes in eleven dimensions. The

intersections of D-branes and other branes can be obtained by dimensional reductions and

T-duality. We look for the possible configurations of intersecting branes by use of (2.19).

It turns out that no configuration is possible for more than eight branes [33]. In what

follows, we present explicit solutions. The case with M-waves or KK-monopoles will be

discussed later (section 5).

1 Here we show the solution without compactification of Z space. One may also discuss the case that

q-dimensions of Z space are smeared, which gives the different power of harmonics, i.e. |z − zk|
−(D−p−3−q)

(q ≤ D − p − 2).

– 7 –
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0 1 2 3 4 5 6 7 8 9 10 Ĩ

M5 ◦ ◦ ◦ ◦ ◦ ◦ √

M5 ◦ ◦ ◦ ◦ ◦ ◦
t x1̃ x2̃ x3̃ x4̃ x5̃ y6 y7 z1 z2 z3

Table 1. M5-M5 brane system

3.1 Dynamical intersecting M-branes

In our solutions (2.4), only one time-dependent brane is allowed, which we denote by Ĩ.

Then we have

hĨ = hĨ(t, z) ≡ AĨ t + HĨ(z) . (3.1)

Here we set BĨ = 0 without loss of generality. We write the solution as

ds2 = A(t, z)



−g0(t, z)dt2 +
∑

α̃∈Ĩ

gα̃(t, z)(dxα̃)2 +
∑

α∈/Ĩ

gα(z)(dyα)2 + uij(z)dzidzj



 ,

(3.2)

with

A =
[

AĨt + HĨ(z)
]aĨ
∏

I 6=Ĩ

HI(z)aI , g0 =
[

AĨt + HĨ(z)
]−1

∏

I 6=Ĩ

HI(z)−1,

gα̃ =
[

AĨt + HĨ(z)
]−1

∏

I 6=Ĩ

H
−γ

(α̃)
I

I , gα =
∏

I 6=Ĩ

H
−γ

(α)
I

I , (3.3)

where

aĨ =
pĨ + 1

D − 2
, and γ

(α)
I =

{

1 for α ∈ I

0 for α ∈/I . (3.4)

Here we divide the coordinates of brane world-volume ({xα}) into two parts ({xα̃}, {yα}):
the first are the pĨ-dimensional coordinates xα̃ which describe the time-dependent brane Ĩ,

and the second are the (p− pĨ)-dimensional coordinates yα which represent the remaining

space of the brane world-volume.

Let us now give one simple example of M5-M5 brane system. The intersection

rule (2.19) gives the brane configuration in table 1. The mark
√

in the table shows which

brane is time dependent, though in this case there is no difference whichever of the two

M5’s is chosen. The metric is then given by

ds2 = (h5̃H5)
2/3

[

(h5̃H5)
−1

(

−dt2 +

3
∑

α̃=1

(dxα̃)2

)

+ h−1
5̃

5
∑

α̃=4

(dxα̃)2

+H−1
5

7
∑

α=6

(dyα)2 + uijdzidzj

]

, (3.5)

– 8 –



J
H
E
P
0
6
(
2
0
0
9
)
0
5
1

that is

A = (h5̃H5)
2/3 ,

g0 = g1̃ = g2̃ = g3̃ = (h5̃H5)
−1 , g4̃ = g5̃ = h−1

5̃
, (3.6)

g1 = g2 = H−1
5 ,

where

h5̃ = A5̃t + H5̃(z) . (3.7)

The form field is given by

F(4) = − ∗Z (dh5̃) ∧ dx4̃ ∧ dx5̃ − ∗Z (dH5) ∧ dy6 ∧ dy7 , (3.8)

where ∗Z is the Hodge dual operator in the three-dimensional Z space.

The complete classification and explicit metrics for intersecting brane systems are

summarized in appendix B.

3.2 Spacetime structure of the intersecting branes

Near branes (|z| ∼ 0), the spacetime structure is the same as that of the static solution

unless the dimension of Z space is one. This is because the metric components diverge

as |z| → 0 and the static harmonic parts dominate the time-dependent terms. In that

case, we know that M2-M2, M2-M5, M2-M2-M2, M5-M5-M5, M2-M2-M5-M5 systems are

regular on the branes.

If Z space is one-dimensional, then we have hĨ = AĨt +
∑

k QI, k|z − zk|. Hence any

points on the branes (z = zk) are regular, and time dependent.

Even if the near-brane structure is regular, we expect another type of singularity may

appear at hĨ(t, z) = 0. Since hĨ is a linear function of t, it vanishes once for any position

z at t = −HĨ(z)/AĨ .

When we take the limit of HĨ → 0 (or finite) as |z| → ∞ for dim(Z) > 1 (or |z| is

finite for dim(Z) = 1), the spacetime turns out to be time dependent and homogeneous.

To see its dynamical behaviour, we introduce a new time coordinate

τ = τ0(AĨt)
(aĨ+1)/2, (3.9)

where τ0 = 2
AĨ(aĨ+1) . The asymptotic solution is rewritten as

ds2 = −dτ2 +

(

τ

τ0

)2qĨ ∑

α̃

(dxα̃)2 +

(

τ

τ0

)2qĨ\

(

∑

α

(dyα)2 + uijdzidzj

)

, (3.10)

where

qĨ =
aĨ − 1

aĨ + 1
= −D − pĨ − 3

D + pĨ − 1
, qĨ\ =

aĨ

aĨ + 1
=

pĨ + 1

D + pĨ − 1
. (3.11)
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More explicitly, for the case of M-theory (D = 11), we find

aĨ = 1/3, qĨ = −1/2, qĨ\ = 1/4, for Ĩ = M2 (pĨ = 2) , (3.12a)

aĨ = 2/3, qĨ = −1/5, qĨ\ = 2/5, for Ĩ = M5 (pĨ = 5) . (3.12b)

Hence, we find a Kasner-like expansion:

pĨ qĨ + pĨ\ qĨ\ = 1 , (3.13a)

pĨ(qĨ)
2 + pĨ\(qĨ\)

2 = 1 . (3.13b)

where pĨ\ = (D− pĨ − 1) is the dimension of the space volume perpendicular to the Ĩ-brane

world-volume. Eq. (3.13a) is always satisfied for any brane configuration, but eq. (3.13b)

is true only for M-theory because no dilaton appears.

This time dependence is also correct if we fix the position in Z space, although the

metric is locally inhomogeneous in the bulk space.

4 Applications to cosmology and black holes

4.1 Cosmology

Now we discuss how these solutions are applied to our physical world. Since we consider

time-dependent solutions, it is natural to discuss cosmology. Suppose that our three-

dimensional universe is a part of branes. Since our universe is isotropic and homogeneous,

same branes must contain this whole three dimensions. Hence we should look for whether

there is a solution with an isotropic and homogeneous three space from a list of our solutions

given in appendix B. Note that this does not mean that the three space must be contained

in all branes. We find just six cases, i.e., M2-M5, M5-M5, M5-M5-M5, M2-M5-M5, M2-

M2-M5, and M2-M2-M5-M5 brane systems. In some cases, we have two different expansion

laws for our universe depending on whether the brane on which our world exists is time

dependent or not.

We then compactify some dimensions to fit our three space. We assume that our uni-

verse is one of the branes (or its three-dimensional part), which can be the time-dependent

one (Ĩ) or the static one (I(6= Ĩ)). Hence our universe stays at a constant position in the

bulk space (z = zk). Note that among the above spacetimes, only M2-M5 and M2-M2-

M5-M5 brane systems are regular on the branes. For other configurations, the curvature

diverges there. Hence one need invoke a mechanism to avoid singularity if our world is

confined on the brane.

We describe our three space Ξ by the coordinates ξ = (ξ1, ξ2, ξ3). There are two

possibilities: One is that Ξ belongs to some part of the time-dependent brane world-volume

XĨ (case 1), and the other is that Ξ is contained in a part of only static brane world-volume

YI(I 6= Ĩ), which does not belong to XĨ (case 2).

For the case 1, the metric (3.2) is described by

ds2 = ds2
4 + ds2

p−3 + ds2
bulk , (4.1)

– 10 –



J
H
E
P
0
6
(
2
0
0
9
)
0
5
1

where

ds2
4 = A

[

−g0dt2 + gξ

∑

α̃∈Ξ

(dxα̃)2

]

,

ds2
p−3 = A





∑

α̃∈/Ξ, α̃∈Ĩ

gα̃(dxα̃)2 +
∑

α∈/Ĩ

gα(dyα)2



 ,

ds2
bulk = Auijdzidzj . (4.2)

From our ansatz, gα̃’s for our three space (α̃ ∈ Ξ) are the same, which we denote gξ. ds2
p−3

is the part of compactified brane world-volume, and ds2
bulk describes the empty bulk space.

We have to describe our 4-dimensional universe in the Einstein frame, which is given by

ds̄2
4 ≡

∏

α̃∈/Ξ, α̃∈Ĩ

(Agα̃)1/2
∏

α∈/Ĩ

(Agα)1/2 ds2
4

= h
sĨ

Ĩ
(t, z)FĨ (z)

[

−f0(z)dt2 + fξ(z)dξ2
]

, (4.3)

where

sĨ =
1

2

[

−(pĨ − 1) +
(p − 1)

(D − 2)
(pĨ + 1)

]

,

FĨ =
∏

I 6=Ĩ

H
(pI+1)(p−1)

2(D−2)

I ×
∏

α̃∈/Ξ, α̃∈Ĩ





∏

I 6=Ĩ

H
−γ

(α̃)
I /2

I



×
∏

α∈/Ĩ





∏

I 6=Ĩ

H
−γ

(α)
I /2

I



 ,

f0 =
∏

I 6=Ĩ

H−1
I , fξ =

∏

I 6=Ĩ

H
−γ

(ξ)
I

I . (4.4)

Here note that the middle factor in FĨ has the exponent γ
(α̃)
I which is nonvanishing for the

case where the coordinate xα̃ belongs to time-dependent brane as well as time-independent

I brane.

For the case 2, we have

ds2
4 = A



−g0dt2 + gξ

∑

α∈Ξ,∈/Ĩ

(dyα)2



 ,

ds2
p−3 = A





∑

α̃∈Ĩ

gĨ(dxα̃)2 +
∑

α∈/Ξ,Ĩ

gα(dyα)2



 ,

ds2
bulk = Auijdzidzj . (4.5)

Hence the 4-dimensional metric of our universe in the Einstein frame is

ds̄2
4 ≡

∏

α̃∈Ĩ

(Agα̃)1/2
∏

α∈/Ξ,∈/Ĩ

(Agα)1/2 ds2
4

= h
sĨ\

Ĩ
(t, z)FĨ\(z)

[

−f0(z)dt2 + hĨ(t, z)fξ(z)dξ2
]

, (4.6)
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where

sĨ\ =
1

2

[

−(pĨ + 2) +
(p − 1)

(D − 2)
(pĨ + 1)

]

,

FĨ\ =
∏

I 6=Ĩ

H

(p
Ĩ
+1)(p−1)

2(D−2)

I ×
∏

α̃∈Ĩ





∏

I 6=Ĩ

H
−γ

(α̃)
I /2

I



×
∏

α∈/Ξ,∈/Ĩ





∏

I 6=Ĩ

H
−γ

(α)
I /2

I



 . (4.7)

Since we fix our universe at some position in the bulk Z space, z is constant in the

above metric. Hence we find the isotropic and homogeneous universe. We introduce the

cosmic time τ , which is defined by

τ =







τĨ(AĨ t)
(sĨ+2)/2 for the case 1

τĨ\(AĨ t)
(sĨ\+2)/2 for the case 2

, (4.8)

where τĨ = 2/[AĨ (sĨ + 2)] and τĨ\ = 2/[AĨ(sĨ\ + 2)], respectively. The scale factor of the

universe is given by

aĨ = (AĨ t)
sĨ/2 =

(

τ

τ0

)βĨ

,

aĨ\ = (AĨ t)
(sĨ\+1)/2

=

(

τ

τ0

)βĨ\

, (4.9)

where

βĨ =
sĨ

(sĨ + 2)
, and βĨ\ =

(sĨ\ + 1)

(sĨ\ + 2)
. (4.10)

The power of the cosmological solution for each possible model is listed in table 2.

Since the time dependence in the metric comes from only one M-brane (or D-brane) in

the intersections, the obtained expansion law may be too simple. In fact, we find the

Minkowski space, which is static, in almost every case.

In order to find an expanding universe, one may have to smear and compactify the

vacuum bulk space as well as the brane world-volume. Suppose k-dimensions of the bulk

Z space are smeared and compactified, where k < dim(Z) = D − p − 1. The metric in the

Einstein frame is multiplied by the extra factor Ak/2. As a result, we find new exponents

of the metric are

s
(k)

Ĩ
= sĨ +

k(pĨ + 1)

2(D − 2)
,

s
(k)

Ĩ\ = sĨ\ +
k(pĨ + 1)

2(D − 2)
. (4.11)

The power of the scale factor is given by the same equations (4.10) by replacing sĨ with

s
(k)

Ĩ
(or sĨ\ with s

(k)

Ĩ\ ). We also show these explicit powers in table 2. However, even for the
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branes dim(Z) sĨ or sĨ\ βĨ or βĨ\ β
(1)

Ĩ
or β

(1)

Ĩ\
β

(2)

Ĩ
or β

(2)

Ĩ\
β

(3)

Ĩ
or β

(3)

Ĩ\

M2-M5 4 −1/3 −1/5 0 1/7 1/4

M5-M5 3 0 0 1/7 1/4 −
case 1 M5-M5-M5 1 2/3 1/4 − − −

(Ĩ =M5) M2-M5-M5 3 0 0 1/7 1/4 −
M2-M2-M5 3 0 0 1/7 1/4 −

M2-M2-M5-M5 3 0 0 1/7 1/4 −
M2-M5 4 −7/6 −1/5 0 1/7 1/4

case 2 M2-M5-M5 3 −1 0 1/7 1/4 −
(Ĩ =M2) M2-M2-M5 3 −1 0 1/7 1/4 −

M2-M2-M5-M5 3 −1 0 1/7 1/4 −

Table 2. The power exponent βĨ ( or βĨ\ ) of the scale factor aĨ ( or aĨ\ ) of possible 4-dimensional

cosmological model is given, i.e. a ∝ τβ , where τ is the cosmic time. The last three columns are for

the case of smeared and compactified bulk space.

fastest expanding case a ∝ τ1/4, the power is too small to give a realistic expansion law

such as that in the matter dominated era (a ∝ τ2/3) or that in the radiation dominated

era (a ∝ τ1/2).

Hence we conclude that in order to find a realistic expansion of the universe in this

type of models, one have to include additional “matter” fields on the brane.

4.2 Time-dependent black holes

Since the static (or stationary) intersecting brane system describes the microstate of a black

hole, it may be natural to apply the present solutions to a time-dependent spacetime with a

black hole. In this case, just as the case of a static black hole, we should compactify all brane

world-volume, and obtain the d-dimensional spacetime, where d ≡ D − p = dim(Z) + 1.

Our metric is described as

ds2 = ds2
d + ds2

p , (4.12)

where

ds2
d = A

[

−g0dt2 + uijdzidzj
]

,

ds2
p = A





∑

α̃∈Ĩ

gα̃(dxα̃)2 +
∑

α∈/Ĩ

gα(dyα)2



 . (4.13)

The compactification of ds2
p gives the effective d-dimensional spacetime, whose metric in

the Einstein frame is given by

ds̄2
d =

∏

α̃∈Ĩ

(Agα̃)1/(d−2)
∏

α∈/Ĩ

(Agα)1/(d−2) A
(

−g0dt2 + uijdzidzj
)

, (4.14)

which is rewritten explicitly as

ds̄2
d = hsBH

Ĩ
FBH(z)

(

−f0(z)dt2 + hĨ(t, z)uijdzidzj
)

, (4.15)
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where

sBH = −d − 3

d − 2
,

FBH(z) =
∏

I 6=Ĩ

H
(pI+1)(p+2)

(d−2)(D−2)

I

∏

α̃∈Ĩ





∏

I 6=Ĩ

H
−γ

(α̃)
I /(d−2)

I





∏

α∈/Ĩ





∏

I 6=Ĩ

H
−γ

(α)
I /(d−2)

I



 . (4.16)

We look for a four or higher dimensional “black hole”, i.e. d ≥ 4, or equivalently

dim(Z) ≡ D − p − 1 ≥ 3. In M-theory, this implies that p ≤ 7. The corresponding brane

systems are M2-M2, M2-M5, M5-M5, M5-M5-M5, M2-M5-M5, and M2-M2-M5-M5.

The near-brane geometry is the same as the static one because hĨ → HĨ(z) as z → zk

and then the geometry approaches the static solution. If it has a horizon geometry, we can

regard the present time-dependent solution as a black hole. We know that only two cases

(M2-M2-M2, M2-M2-M5-M5) give regular black hole spacetimes in the static limit.

On the other hand, the asymptotic structure is completely different. The static solution

has an asymptotically flat geometry, but the present solution is time dependent. In fact,

setting hĨ = t/t0 + HĨ , from eq. (4.15) in the limit of |z| → ∞, we find

ds̄2
d =

(

t

t0

)sBH
[

−dt2 +

(

t

t0

)

uijdzidzj

]

= −dτ2 + a2
BH(τ)uijdzidzj , (4.17)

where

aBH =

(

τ

τ0

)βBH

, (4.18)

with

βBH =
sBH + 1

sBH + 2
=

1

d − 1
, τ0 =

2

sBH + 2
t0 =

2(d − 2)

d − 1
t0 . (4.19)

Hence our solution approaches asymptotically the FRW universe with the scale factor aBH.

So, if the static solution gives a black hole, then we can regard the present solution as a

black hole in the expanding universe. In table 3, we show a list of the power exponent of

asymptotic expanding universe for the possible black hole (or black object) model.

If we smear and compactify the vacuum bulk Z space just as the case of cosmology, we

find the different power exponent of the scale factor, which is also shown in table 3. As a

result, we always find the same power βBH = 1/(d − 1) for a d-dimensional black hole (or

black object). This power exponent is obtained for the universe filled by stiff matter whose

equation of state is P = ρ. Therefore we may regard the present d-dimensional solution as

a time-dependent black hole in the stiff-matter dominated universe.

Here we give one explicit example of M2-M2-M5-M5 brane system. We assume that

one M2 brane is time-dependent.

ds̄2
4 = − (h2̃H2H5H5′)

−1/2 dt2 + (h2̃H2H5H5′)
1/2 (dr2 + r2dΩ2

2

)

, (4.20)
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branes d Ĩ sBH βBH β
(k)
BH BH

M2-M2 7 M2 −4/5 1/6 1/5, 1/4, 1/3 (k = 1, 2, 3)

M2-M5 5 M2 −2/3 1/4 1/3 (k = 1)

M5 −2/3 1/4 1/3 (k = 1)

M5-M5 4 M5 −1/2 1/3 −
M5-M5-M5 4 M5 −1/2 1/3 −
M2-M5-M5 4 M2 −1/2 1/3 −

M5 −1/2 1/3 −
M2-M2-M5 4 M2 −1/2 1/3 −

M5 −1/2 1/3 −
M2-M2-M2 5 M2 −2/3 1/4 1/3 (k = 1)

√

M2-M2-M5-M5 4 M2 −1/2 1/3 − √

M5 −1/2 1/3 − √

Table 3. The power exponent of the asymptotic expansion for “BH” spacetime. Only the brane

systems marked in the column “BH” have regular horizons.

where

h2̃ =
t

t0
+

Q2̃

r
,

H2 = 1 +
Q2

r
, H5 = 1 +

Q5

r
, H5′ = 1 +

Q5′

r
, (4.21)

This metric is rewritten as

ds̄2
4 = −(H̃2̃H2H5H5′)

−1/2dτ2 + a2
BH(τ)(H̃2̃H2H5H5′)

1/2
(

dr2 + r2dΩ2
2

)

, (4.22)

where

H̃2̃ = 1 +
Q̃2̃(τ)

r
, and aBH =

(

τ

τ0

) 1
3

, (4.23)

with

Q̃2̃ ≡
(

τ

τ0

)− 4
3

Q2̃ , and τ0 ≡ 4

3
t0 . (4.24)

The power 1/3 in eq. (4.23) is the one given in table 3.

5 Intersecting M-branes with M-waves and KK-monopoles

Now we discuss the dynamical intersecting brane solutions including M-waves and KK-

monopoles in eleven dimensions. The dimensional reduction of these generates the Kaluza-

Klein electric or magnetic charges in the 2-form field strengths [32, 34–36]. In (D − 1)-

dimensional spacetime, one can obtain the electric 0-brane and the magnetic (D−5)-brane

solutions. Lifting up those solutions by one dimension, we obtain the KK-wave and KK-

monopole in D-dimensions, respectively. In particular, KK-wave is called “M-wave” in

eleven-dimensional theory [37, 38]. We briefly summarize those objects in appendix C.

We extend our brane solutions given in section 3 to the cases with M-waves and/or

KK-monopoles. For the static case, there is a classification of the multiple intersecting

branes with the M-waves and/or KK-monopoles [33, 34].
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0 1 2 3 4 5 6 7 8 9 10 Ĩ cos BH

M2-W M2 ◦ ◦ ◦ (a) − √

W ◦ ζ (b) − √

M5-W M5 ◦ ◦ ◦ ◦ ◦ ◦ (a)
√ √

W ◦ ζ (b)
√ √

M2-KKM M2 ◦ ◦ ◦ (a)
√ √

KKM ◦ ◦ ◦ ◦ ◦ ◦ ◦ ζ A(m)
8 A(m)

9 A(m)
10 (b)

√ √

M2 ◦ ◦ ◦ (c)
√ −

KKM ◦ ◦ ◦ ◦ ◦ ◦ ◦ ζ A(m)
8 A(m)

9 A(m)
10 (d)

√ −
M5-KKM M5 ◦ ◦ ◦ ◦ ◦ ◦ (a)

√ √

KKM ◦ ◦ ◦ ◦ ◦ ◦ ◦ ζ A(m)
8 A(m)

9 A(m)
10 (b)

√ √

M5 ◦ ◦ ◦ ◦ ◦ ◦ (c)-1,2
√ −

KKM ◦ ◦ ◦ ◦ ◦ ◦ ◦ ζ A(m)
8 A(m)

9 A(m)
10 (d)-1,2

√ −

W-KKM W ◦ ζ1 (a)
√ √

KKM ◦ ◦ ◦ ◦ ◦ ◦ ◦ ζ7 A(m)
8 A(m)

9 A(m)
10 (b)

√ √

KKM-KKM KKM ◦ ◦ ◦ ◦ ◦ B(m)
5 B(m)

6 ζ ◦ ◦ B(m)
10 (a)

√ −
KKM ◦ ◦ ◦ ◦ ◦ ◦ ◦ ζ A(m)

8 A(m)
9 A(m)

10

KKM ◦ ◦ ◦ ◦ ◦ ζ5 B(m)
6 ◦ ◦ B(m)

9 B(m)
10 (b)

√ −
KKM ◦ ◦ ◦ ◦ ◦ ◦ ◦ ζ7 A(m)

8 A(m)
9 A(m)

10

Table 4. The brane configurations following the intersection rule with M-wave (W) and/or KK-

monopole (KKM). The brane systems marked in the columns “cos” and “BH” can be used for

cosmological and black hole systems. The labelling (a), (b), · · · in the column “Ĩ” denotes which

brane (or M-wave, KK-monopole) is time dependent. In the second case of M5-KKM system, there

are two possibilities which space dimensions can be our three space, i.e., the case 1: [(ξ1, ξ2, ξ3) =

(x1, x2, x3)] and the case 2: [(ξ1, ξ2, ξ3) = (x4, x5, x6)]. We show them by (c)-1 (c)-2, or (d)-1, (d)-2.

We first show the intersection rule for the branes with M-wave and/or KK-monopoles,

which is summarized in table 4. In the table, circles indicate where the brane world-

volumes enter, ζ represents the coordinate of the KK-monopole, and the time-dependent

branes are indicated by (a) and (b) for different solutions. When the solutions can be used

for cosmology and black hole physics, they are marked in the corresponding columns.

There are two configurations for two KK-monopole system as shown in table 4. The metric

of the former and the latter cases are given by

ds2
2KKM = −dt2 +

4
∑

α=1

(dxα)2 + hm1

6
∑

α=5

(dzα)2 + hm2

9
∑

α=8

(dzα)2 + hm1hm2

(

dz10
)2

+(hm1hm2)
−1
[

dζ + B(m)
5 dz5 + B(m)

6 dz6 + A(m)
8 dz8 + A(m)

9 dz9 +
(

A(m)
10 + B(m)

10

)

dz10
]2

.

(5.1)

ds2
2KKM = −dt2 +

4
∑

α=1

(dxα)2 + hm2

(

dz6
)2

+ hm1

(

dz8
)2

+ hm1hm2

10
∑

α=9

(dzα)2
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+(hm2)
−1
(

dζ5 + B(m)
6 dz6 + B(m)

9 dz9 + B(m)
10 dz10

)2

+(hm1)
−1
(

dζ7 + A(m)
8 dz8 + A(m)

9 dz9 + A(m)
10 dz10

)2
. (5.2)

Next, we present the brane systems with M-wave or one KK-monopole. As we men-

tioned, only one brane can have time dependence in the present approach. It is also true

for the warp factor from M-wave or KK-monopole. Hence we have two cases for time-

dependent solutions, i.e. we can have either one time-dependent brane or time-dependent

M-wave (or KK-monopole).

In the former case, the metric forms for the spacetimes with M-wave and with KK-

monopole, respectively, are written as

ds2
W = A(t, z)

[

g0(t, z)
{

−dt2 + (dζ 1̃)2 + fw(z)(dt − dζ 1̃)2
}

+
∑

α̃6=1,α̃∈Ĩ

gα̃(t, z)(dxα̃)2 +
∑

α∈/Ĩ

gα(z)(dyα)2 + uij(z)dzidzj
]

, (5.3)

ds2
KKM = A(t, z)

[

− g0(t, z)dt2 +
∑

α̃∈Ĩ

gα̃(t, z)(dxα̃)2

+
∑

α∈/Ĩ

gα(z)(dyα)2 + hm(z)uijdzidzj + h−1
m (z)

(

dζ + A(m)
i (z)dzi

)2 ]

, (5.4)

with

A =
[

AĨt + HĨ(z)
]aĨ
∏

I 6=Ĩ

HI(z)aI , g0 =
[

AĨt + HĨ(z)
]−1

∏

I 6=Ĩ

HI(z)−1,

gα̃ =
[

AĨt + HĨ(z)
]−1

∏

I 6=Ĩ

H
−γ

(α̃)
I

I , gα =
∏

I 6=Ĩ

H
−γ

(α)
I

I . (5.5)

where

aĨ =
pĨ + 1

D − 2
, and γ

(α)
I =

{

1 for α ∈ I

0 for α ∈/I .
(5.6)

The coordinate ζ belongs to either X or Z. In the KK-monopole case, dim(Z)=3.

If M-wave or KK-monopole depends on time, we find the following solutions:

ds2
W = A(z)

[

g0(z)

{

−dt2 +
(

dζ 1̃
)2

+ fw(t, z)
(

dt − dζ 1̃
)2
}

+
∑

α

gα(z)(dxα)2 + uij(z)dzidzj

]

, (5.7)

ds2
KKM = A(z)

[

− g0(z)dt2 +
∑

α

gα(z)(dxα)2

+hm(t, z)uijdzidzj + h−1
m (t, z)

(

dζ + A(m)
i (z)dzi

)2
]

, (5.8)
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0 1 2 3 4 5 6 7 8 9 10 Ĩ cos BH

M2 ◦ ◦ ◦ (a)
√ √

M5 ◦ ◦ ◦ ◦ ◦ ◦ (b)
√ √

W ◦ ◦ (c)
√ √

t ζ 1̃ y2 x3̃ x4̃ x5̃ x6̃ z1 z2 z3 z4

Table 5. M2-M5-W brane system

with

A =
∏

I

HaI
I , g0 =

∏

I

H−1
I , gα =

∏

I

H
−γ

(α)
I

I , (5.9)

where

fw(t, z) = Awt + Hw(z) − 1 , hm(t, z) = Amt + Hm(z) . (5.10)

Hw and Hm are harmonic functions on Z space, and A(m)
i satisfies eqs. (C.13) and (C.15).

We give one concrete example, i.e. the M2-M5 brane system with M-wave (M2-M5-W).

If M5 brane is time-dependent (M2-M5-W (b): See table 5 for the configuration), the

metric is then given by

ds2 = h
2/3

5̃
H

1/3
2

[

(h5̃H2)
−1
{

−dt2 + (dζ 1̃)2 + fw(dt − dζ 1̃)2
}

+H−1
2 (dy2)2 + h−1

5̃

6
∑

α̃=3

(dxα̃)2 + uijdzidzj
]

, (5.11)

that is

A = h
2/3

5̃
H

1/3
2 , g0 = (h5̃H5)

−1 , g2̃ = g3̃ = g4̃ = g5̃ = h−1
5̃

, g2 = H−1
2 , (5.12)

where

h5̃ = A5̃t + H5̃(z) . (5.13)

The form field is given by

F(4) = − ∗Z (dh5̃) ∧ dy2 + dH−1
2 ∧ dt ∧ dζ 1̃ ∧ dy2 , (5.14)

where ∗Z is the Hodge dual operator in the four-dimensional Z space.

Since the classification of static solutions is given in [33, 34] and ours is basically the

same, we discuss only interesting cases here. As we discussed in section 4, we can apply the

present solutions to analyze cosmology and black holes. In order to discuss those subjects,

we need either an isotropic and homogeneous three space in the brane world-volume or

three-dimensional (or higher-dimensional) vacuum Z space. However, as seen in table 4, a

wave breaks the isotropy and homogeneity in one wave-propagating dimension, and KK-

monopoles not only give inhomogeneities but also fill branes in many dimensions after

compactifying ζ-direction. These facts make the application to our interesting subjects

more difficult as the number of KK-monopoles increases. As a result, we find several

examples in the system of small number of branes, but few examples for the system of

large number of branes. In appendix D, we present the brane configurations for those

possible models
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branes dim(Z) βc

M5-W(a) 5 −1/2

M5-KKM(a) 3 0

M5-KKM(c)-1 3 1/5

M5-KKM(c)-2 3 0

M2-M5-W(b) 4 −1/5

case 1 M2-M5-KKM(b) 3 0

(Ĩ =M5) M2-M5-KKM(e)-1 3 1/5

M2-M5-KKM(e)-2 3 0

M2-M5-W-KKM(b) 3 0

M5-M5-KKM(a) 3 0

M5-M5-KKM(b) 3 1/5

M5-M5-KKM-KKM(a) 4 1/13

M2-KKM(a) 3 0

M2-KKM(c) 3 1/3

M2-M5-W(a) 4 −1/5

case 2 M2-M5-KKM(a) 3 0

(Ĩ =M2) M2-M5-KKM(d)-1 3 1/3

M2-M5-KKM(d)-2 3 1/3

M2-M5-W-KK(a) 3 0

M2-M2-KKM(c) 3 1/3

M2-M2-KKM(d) 3 0

Table 6. The power exponent βc of the scale factor a of possible 4-dimensional cosmological model

is given, i.e. a ∝ τβ
c
, where τ is the cosmic time. The labelling (a), (b), · · · corresponds to the

configuration given in tables 4 and 16.

5.1 Cosmology

For zero M-brane or one M-brane systems, which we show in table 4, we can discuss

cosmology for many cases. The possible cosmological models are marked by
√

in the

column “cos” (M5-W, M2-KKM, M5-KKM, W-KKM, KKM-KKM brane systems). For

two M-brane system, the possible models are M2-M5-W, M2-M5-KKM, M2-M5-W-KKM,

M2-M2-KKM, M5-M5-KKM, M5-M5-KKM-KKM. For more than two brane system with

M-waves or KK-monopoles, we have no interesting case. Note that we have only three cases

(M2-W, M5-W, and M2-M5-W) in which spacetime is regular on the branes (at z = zk).

For other configurations, the curvature diverges. One may need some mechanism to avoid

singularity if our world is confined on the brane.

In table 6, we summarize the power exponent of the scale factor a of the expanding

universe when the brane is time-dependent. For the case that the wave or KK-monopole is

time-dependent, we always find the same power exponents, i.e,, βc = 1/3 and −1/3 for the

time-dependent wave and the time-dependent KK-monopole, respectively. In some cases

[M2-KKM(c), M2-M5-KKM(d)-1,2, M2-M2-KKM(d), and the time-dependent wave (M5-

W(b), W-KKM(a), M2-M5-W(c), M2-M5-W-KKM(c))], we find that the power exponent

of the scale factor is 1/3, which is that of the expanding universe with stiff matter fluid.

We give a simple example of M2-M5-KKM(a). The metric is given by

ds2 = h
1/3

2̃
H

2/3
5

[

(h2̃H5)
−1
{

−dt2 + (dy1)2
}

+ h−1
2̃

(dy2)2 + H−1
5

6
∑

α̃=3

(dxα̃)2
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branes d βBH BH

M5-W 6 1/5

case 1 M5-KKM 4 1/3

(Ĩ =M5) M2-M5-W 5 1/4
√

M2-M5-KKM 4 1/3

M2-M5-W-KKM 4 1/3
√

M2-W 9 1/8

M2-KKM 4 1/3

case 2 M2-M5-W 5 1/4
√

(Ĩ =M2) M2-M5-KKM 4 1/3

M2-M5-W-KKM 4 1/3
√

M2-M2-KKM 4 1/3

M5-W 6 1/5

case 3 W-KKM 4 1/3

(Ĩ =W) M2-M5-W 5 1/4
√

M2-M5-W-KKM 4 1/3
√

M5-KKM 4 1/3

W-KKM 4 1/3

case 4 M2-M5-KKM 4 1/3

(Ĩ =KKM) M2-M5-W-KKM 4 1/3
√

M2-M2-KKM 4 1/3

Table 7. The power exponent βBH of the scale factor aBH of the asymptotic FRW universe for the

possible 4-dimensional black hole spacetime is given, i.e. aBH ∝ τβBH , where τ is the cosmic time.

The marked one in the column “BH” has a finite horizon area, i.e,, it has a regular horizon.

+h−1
m (dζ + Aidzi)2 + hmuijdzidzj

]

. (5.15)

The compactified metric in the Einstein frame is

ds2
4 = h−1/2

m

[

−h−1
2̃

dt2 + dξ2
]

. (5.16)

This gives βc = 0 in table 6.

For the case with the wave, we can smear some dimensions (<dim(Z)) just as in

section 4.1, and the result is exactly the same as the case without the wave.

5.2 Time-dependent black holes

We can also discuss some black hole spacetime by compactifying the brane world-volume

as in section 4.2. Although the spacetime is time dependent, near-brane geometry is the

same as that of the static brane solution. If we find the horizon at |z| = 0 for the static

brane solution, we obtain a black hole geometry by compactification. As for the possible

spacetime for a black hole (or object), we summarize our result in table 7.

We show one concrete example of M2-M5-W brane system. The metric is given by

eq. (5.11). Compactifying the brane world-volume, the 5-dimensional metric in the Einstein

frame is given by

ds̄2
5 = − [h5̃H2 (1 + fw)]−2/3 dt2 + [h5̃H2 (1 + fw)]1/3 (dr2 + r2dΩ2

3

)

, (5.17)

where

h5̃ =
t

t0
+

Q5̃

r2
, H2 = 1 +

Q2

r2
, fw =

Qw

r2
, (5.18)
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This metric is rewritten as

ds̄2
5 = −

[

H̃5̃H2 (1 + fw)
]−2/3

dτ2 + a2
BH(τ)

[

H̃5̃H2 (1 + fw)
]1/3 (

dr2 + r2dΩ2
3

)

, (5.19)

where

H̃5̃ = 1 +
Q̃5̃(τ)

r2
, and aBH =

(

τ

τ0

)
1
4

, (5.20)

with

Q̃5̃ ≡
(

τ

τ0

)− 3
2

Q5̃ , and τ0 ≡ 3

2
t0 . (5.21)

The expansion rate of this scale factor is the same as that of the stiff-matter dominant

universe in 5 dimensions. Hence this solution is regarded as a five-dimensional black hole

in the expanding universe.

6 Lorentz invariance and the lower-dimensional effective theory

When we discuss four-dimensional cosmology, we assume that our three space is isotropic

and homogeneous. However, in that case, the time direction can be different from three

spatial directions. In fact if some branes are not filled in this three space, the time direction

which is filled by all branes is not the same as three spatial directions. When we perform a

Lorentz transformation, three spatial directions are not equivalent. For example, suppose

we have M2-M5-M5 brane system. There are two possible cosmological models: the case 1

(M2-M5-M5 (b)) and the case 2 (M2-M5-M5 (a)) (see tables 2 and 10). We assume that we

are living on three space ξ = (x3, x4, x5). Then the four dimensional metric in the Einstein

frame is

ds̄2
4 = FĨ(z)

[

−f0(z)dt2 + fξ(z)dξ2
]

, (6.1)

where

F2̃ = (H5H5′)
−1/2 , f0(z) = fξ(z) = (H5H5′)

−1 for M2-M5-M5 (a) ,

F5̃ = H
−1/2
5 , f0(z) = (H2H5)

−1 , fξ(z) = H−1
5 for M2-M5-M5 (b) .

(6.2)

For M2-M5-M5 (a), we have

ds̄2
4 = (H5H5′)

−3/2
(

−dt2 + dξ2
)

∝ ηµνdξµdξν , (6.3)

where ξµ = (t, ξ). This spacetime is Lorentz invariant. On the other hand, for M2-M5-M5

(b), we find

ds̄2
4 = H

−3/2
5

(

−H−1
2 dt2 + dξ2

)

. (6.4)
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When we perform a Lorentz transformation in the t-ξ plane (ξ = ξ1);

(

t′

ξ′

)

=

(

γ (t − V ξ)

γ (ξ − V t)

)

, (6.5)

where V is the velocity of new inertia frame and γ = (1 − V 2)−1/2 is its Lorentz factor,

we have

ds̄2
4 = H

−3/2
5

[

−(dt′)2 + (dξ′)2 + (H−1
2 − 1)γ2(dt′ + V dξ′)2

]

. (6.6)

The last term in eq. (6.6) gives the breaking term of Lorentz invariance. Hence the order

of magnitude of breaking the Lorentz invariance is

O
(

H−1
2 − 1

)

∼ O
(

∑

k

Q2,k

|z − zk|

)

. (6.7)

In order to keep the Lorentz invariance, we need the condition of f0 = fξ, which means

that all branes except for one time-dependent brane contain our three space Ξ. Hence 4D

universes constructed from M2-M5 (a), M5-M5, M5-M5-M5, and M2-M5-M5 (a) have the

Lorentz invariance.

We can extend this four-dimensional Minkowski space into a curved space with general

covariance. We take the following metric just as in appendix A:

ds2 = A



g0qµνdξµdξν +
∑

α̃∈/Ξ, α̃∈Ĩ

gĨ(dxα̃)2 +
∑

α∈/Ĩ

gα(dyα)2 + uijdzidzj



 , (6.8)

where we assume that the four-dimensional metric qµν depends only on ξµ and that all

branes (or all except for one time-dependent brane) fill our four-dimensional spacetime.

Inserting this metric form, we find the solution

Rµν

(

Ξ̂
)

= 0 , Rij(Z) = 0,

hĨ = KĨ(ξ) + HĨ(z) , hI = HI(z)for I 6= Ĩ ,

DµDνKĨ = 0,

△ZHĨ = 0 , △ZHI = 0 forI 6= Ĩ , (6.9)

where Ξ̂ is our four-dimensional spacetime.

Here let us point out the important fact on the nature of the dynamical solutions

described above. We often discuss the four-dimensional effective theories, which are derived

from eleven-dimensional supergravity with branes. In these occasions, we assume that

there exists a Lorentz invariance in the limit of a flat Minkowski space, write down the

scalar curvature, and then integrate the eleven-dimensional action over compactified extra

dimensions to discuss the four-dimensional effective theories.

However, it has been well known for decades that such a procedure is generically

inconsistent: one should work at the level of the field equations, write the field equations
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in lower-dimensional form and then integrate them back to a lower-dimensional action.

In our specific case too, solutions of the effective four-dimensional theories may not give

solutions of the above type with the warp factors in eleven dimensions which depend on

time and zi. This is because they are genuinely D-dimensional so that one can never neglect

the dependence on the bulk space (Z) in the basic equations. Hence the solutions of the

effective theories are quite often inconsistent with the basic equations in eleven dimensions.

This has been recently shown explicitly for a single brane in ref. [9]. Here we would like to

point out that this is also true in the intersecting brane solutions. This fact should be kept

in mind because recently the dynamics of the internal space moduli in higher-dimensional

theories has been investigated by using four-dimensional effective theories.

Let us show one explicit example of M5-M5 brane system. The four-dimensional

effective action is obtained by dimensional reduction from our eleven-dimensional action.

Our solution is

ds2 = (h5̃H5)
−1/3

[

qµν(Ξ̂)dξµdξν + H5rα̃β̃(X)dxα̃dxβ̃

+h5̃sαβ(Y)dyαdyβ + h5̃H5uab(Z)dzadzb
]

,

F(4) = − ∗Z (dh5̃) ∧ dxα̃ ∧ dxβ̃ − ∗Z (dH5) ∧ dyα ∧ dyβ , (6.10)

where ∗Z is the Hodge dual operator in the Z space, and qµν(Ξ̂), rα̃β̃(X), sαβ(Y) and

uij(Z) are the metrics on our four-dimensional spacetime Ξ̂, two-dimensional space X, two-

dimensional space Y and the three dimensional transverse space Z. Taking into account

the ansatz h5̃ = K5̃(ξ) + H5̃(z) and H5(z), we find the eleven-dimensional scalar curvature

R is

R = (h5̃H5)
1/3R(Ξ̂) + (h5̃H5)

−2/3 [h5̃R(X) + H5R(Y) + R(Z)]

−5

3
(h5̃H5)

1/3h−1
5̃

�Ξ̂K5̃ −
4

3
(h5̃H5)

−2/3
(

h−1
5̃

△Zh5̃ + H−1
5 △ZH5

)

+
15

18
(h5̃H5)

−2/3uij (∂i ln h5̃∂j ln h5̃ + ∂i ln H5∂j ln H5) , (6.11)

where �Ξ̂ and △Z are the D’Alembertian and Laplace operator for Ξ̂-spacetime and Z-

space, respectively. Assuming Ricci flatness for X, Y and Z spaces, and harmonicity for

H5̃ and H5 (△ZH5̃ = △ZH5 = 0), we get

S =
1

2κ̃2

∫

Ξ̂
H(ξ)R(Ξ̂) ∗Ξ̂ 1Ξ̂, (6.12)

where ∗Ξ̂ denotes the Hodge dual operator on Ξ̂, we have dropped the surface terms,

κ̃ ≡ (VXVYV0)
−1/2κ, and H(ξ) is defined by

K(ξ) = K5̃(ξ) + c̄; c̄ := V −1
0

∫

Z
H5̃H5 ∗Z 1Z, (6.13)

where ∗Z represents the Hodge dual operator on Z, and VX, VY, V0 are given by

VX =

∫

X
∗X1X, VY =

∫

Y
∗Y1Y, V0 =

∫

Z
H5 ∗Z 1Z. (6.14)
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The four-dimensional field equations are then given by

Rµν

(

Ξ̂
)

= K−1DµDνK,

�Ξ̂K = 0. (6.15)

If the four-dimensional spacetime Ξ̂ is Ricci flat, these equations reproduce the correct ones

for K5̃(x) = K− c̄ obtained from the eleven-dimensional theory before. However, the Ricci

flatness of Ξ̂ is not required in the present effective theory (6.12) unlike in the full eleven-

dimensional theory (2.1). Hence, the class of solutions obtained in the four-dimensional

effective theory are much larger than the higher-dimensional original theory [9]. This makes

the higher-dimensional solutions even more restrictive than those of the four-dimensional

effective equations. This is because the information of the internal space which gives

constraints on the lower dimensions was lost after compactifying the internal space.

We note that the effective theory has a modular invariance similar to the no-flux case

F4 = 0. In fact, by the conformal transformation ds2
Ξ̂

= K−1ds2
Ξ̄
, (6.12) is expressed in

terms of the variables in the Einstein frame as

S =
1

2κ̃2

∫

Ξ̄

[

R(Ξ̄) ∗Ξ̄ 1Ξ̄ − 3

2
dϕ ∧ ∗Ξ̄dϕ

]

, (6.16)

where R(Ξ̄) is the scalar curvature with respect to the metric ds2
Ξ̄
, ∗Ξ̄ denotes the Hodge

dual operator on Ξ̄, and ϕ ≡
√

3
2 ln K. The corresponding four-dimensional Einstein

equations in the Einstein frame and the field equation for ϕ are given by

Rµν(Ξ̄) = D̄µϕD̄νϕ,

�Ξ̄ϕ = 0 . (6.17)

It is clear that this action and the equations of motion are invariant under the transforma-

tion ϕ → −ϕ + λ, where λ is an arbitrary constant.

7 Concluding remarks

In this paper, we have derived general intersecting dynamical brane solutions, given the

complete classification of the intersecting M-branes, and discussed the dynamics of the

higher-dimensional supergravity models with applications to cosmology and black hole

physics. The solutions we have found are the spacetime-dependent solutions. These solu-

tions were obtained by replacing a time-independent warp factor hĨ = HĨ(z) of a supersym-

metric solution by a time-dependent function hĨ = AĨ t+HĨ(z) [14, 27]. Our solutions can

contain only one function depending on both time t and transverse space coordinates zi.

Supposing that our universe stays at a constant position in the bulk space Z (zk),

we have shown that several four-dimensional effective theories on the branes give four-

dimensional Minkowski space or FRW universe. The power of the scale factor, however, is

too small to give a realistic expansion law. This means that we have to consider additional

matter on the brane in order to get a realistic expanding universe. On the other hand, we

can also discuss time-dependent black hole spacetimes which approach asymptotically the
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FRW universe, if we regard the bulk space as our universe. The near horizon geometries of

these black holes in the expanding universe are the same as the static solutions. However

the asymptotic structures are completely different, giving the FRW universe with scale

factors same as the universe filled by stiff matter.

In the viewpoint of higher-dimensional theory, the dynamics of four-dimensional back-

ground are given by the solution of higher-dimensional Einstein equations. For instance,

in the black p-brane system, the solution tells us that the (p + 1)-dimensional spacetime X

is Ricci flat. The (p + 1)-dimensional spacetime is then similar to the Kasner solution for

the (p + 1)-dimensional background [14]. On the other hand, if we start from the lower-

dimensional effective theory for warped compactification, the solutions may not be allowed

in the higher-dimensional theory. We have shown that it is the case in M5-M5 brane sys-

tem. The same is true for M5-M5-M5 and D2-D6 brane systems in ten-dimensional type

IIA theories. This is because the function of z in the metric is integrated out in the lower-

dimensional effective action. Then, the information of the extra dimensions in the function

h of the metric will be lost by the compactification. This result implies that we have to be

careful when we use a four-dimensional effective theory to analyse the moduli stabilization

problem and the cosmological problems in the framework of warped compactification of

supergravity or M-theory [9] (see also [10, 11, 40–43] for recent progress in the effective

theory for warped compactifications).

We have also noted that if the Lorentz invariance is not kept on the lower-dimensional

world-sheet, the lower-dimensional effective action cannot be written in the covariant form

for the lower-dimensional metric. Some of the four- or five-dimensional effective theories in

this paper thus have broken Lorentz invariance on the world-sheet. Although the examples

considered in the present paper do not provide realistic cosmological models, this feature

may be utilised to investigate a cosmological analysis in a realistic higher-dimensional

cosmological model.

As we stated above, our solutions can contain only one function depending on both

time and transverse space coordinates, and this seems to be a limitation on the applications

of the solutions. Recent study of similar systems depending on the light-cone coordinate

and space shows that it is possible to obtain solutions with more nontrivial dependence

on spacetime coordinates [44]. It is interesting to study if similar more general solutions

can be obtained by relaxing some of our ansätze. We hope to report on this subject in the

near future.
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A Dynamical solution of a single p-brane

In this appendix, we briefly summarize the results for the case of a single dynamical p-

brane [14]. We consider a single p-brane in our action (2.1) [2]. In what follows, we use the

same notation for the variables and parameters of this single brane dropping the suffix I.

To solve the field equations (2.3a), (2.3b), and (2.3c), we assume the D-dimensional

metric in the form

ds2 = ha(x, z)uij(Z)dzidzj + hb(x, z)qµν(X)dxµdxν , (A.1)

where qµν is a (p+1)-dimensional metric which depends only on the coordinates xµ ≡ (t, xα)

with α being the spatial coordinates of the brane, and uij is the (D − p − 1)-dimensional

metric which depends only on the coordinates zi. The parameters a and b are given in

eqs. (2.6). Note that in the case of interacting branes, we divide the coordinate for branes

into two parts; the time coordinate t and the spatial coordinates of brane world-volume

xα, and assume that the metric depends on only t and zi, but not on xα. The metric

form (A.1) is a straightforward generalization of the case of a static p-brane system with a

dilaton coupling [2].

We also assume that the scalar field φ and the gauge field strength F(p+2) are given by

eq. (2.7)

With the above ansatz, the Einstein equations are given by

Rµν(X) − h−1DµDνh − b

2
h−1qµν

(

△Xh + h−1△Zh
)

= 0, (A.2a)

Rij(Z) − a

2
uij

(

△Xh + h−1△Zh
)

= 0, (A.2b)

∂µ∂ih = 0, (A.2c)

where Dµ is the covariant derivative with respective to the metric qµν , △X and △Z are the

Laplace operators on the space of X and the space Z, and Rµν(X) and Rij(Z) are the Ricci

tensors of the metrics qµν and uij , respectively. From eq. (A.2c), the warp factor h must

be in the form

h(x, z) = K(x) + H(z). (A.3)

With this form of h, the other components of the Einstein equations (A.2a) and (A.2b) are

rewritten as

Rµν(X) − h−1DµDνK − b

2
h−1qµν

(

△XK + h−1△ZH
)

= 0, (A.4a)

Rij(Z) − a

2
uij

(

△XK + h−1△ZH
)

= 0. (A.4b)

Next we consider the gauge field. Under the assumption (2.7), we find

dF(p+2) = h−1(2∂i ln h∂j ln h + h−1∂i∂jh)dzi ∧ dzj ∧ Ω(X) = 0. (A.5)

Thus, the Bianchi identity is automatically satisfied. Also the equation of motion for the

gauge field (2.3c) becomes

d
[

e−cφ ∗ F(p+2)

]

= −d
[

∂ih(∗Zdzi)
]

= 0, (A.6)
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where ∗Z denotes the Hodge dual operator on Z. Hence, the gauge field equation is auto-

matically satisfied.

Let us consider the scalar field equation. Substituting the forms of the scalar field and

the gauge field (eq. (2.7)), and the warp factor (A.3) into the equation of motion for the

scalar field (2.3b), we obtain

c

2
h−a

(

△XK + h−1△ZH
)

= 0, (A.7)

Thus, unless the parameter c is zero, the warp factor h should satisfy the equations

△XK = 0, △ZH = 0. (A.8)

If F(p+2) 6= 0, the function H is non-trivial. In this case, the Einstein equations reduce to

Rµν(X) = 0,

Rij(Z) = 0, (A.9)

DµDνK = 0.

If F(p+2) = 0, however, the function H becomes trivial, and then the internal space is no

longer warped [9].

We show an example. We consider the case

qµν = ηµν , uij = δij , (A.10)

that is, we have the (p + 1)-dimensional Minkowski space and the (D − p− 1)-dimensional

Euclidean space. In this case, the solution for h is obtained explicitly as

h(x, z) = Aµxµ + B +
∑

k

Qk

|z − zk|D−p−3
, (A.11)

where Aµ, B and Qk are constant parameters.

For the case of c = 0, the scalar field becomes constant because of the ansatz (2.7),

and the scalar field equation (A.7) is automatically satisfied. Then, the Einstein equa-

tions become

Rµν(X) = 0,

Rij(Z) =
1

2
a(p + 1)λuij(Z), (A.12)

DµDνK = λ qµν(X),

where λ is a constant. We see that the internal space Z is not Ricci flat, but the Einstein

space if λ 6= 0, and the function K can be more non-trivial. For example, if qµν = ηµν , K

is no longer linear but quadratic in the coordinates xµ [27].

– 27 –



J
H
E
P
0
6
(
2
0
0
9
)
0
5
1

0 1 2 3 4 5 6 7 8 9 10 Ĩ cos BH

(M2)2 M2 ◦ ◦ ◦ (a) − √

M2 ◦ ◦ ◦
M2M5 M2 ◦ ◦ ◦ (a)

√ √

M5 ◦ ◦ ◦ ◦ ◦ ◦ (b)
√ √

(M5)2 M5 ◦ ◦ ◦ ◦ ◦ ◦ (a)
√ √

M5 ◦ ◦ ◦ ◦ ◦ ◦

Table 8. Intersections of two M-branes.

B Classification of intersecting branes

In this appendix, we present a complete classification of time-dependent intersecting M-

branes. For two ∼ four brane systems, we give all possible brane configurations and those

metrics explicitly in tables 8–15. In the first tables in these tables, circles indicate where

the brane world-volumes enter, and the time-dependent branes are indicated by (a) and

(b) for different solutions. When the solutions can be used for cosmology and black hole

physics, they are marked in the corresponding columns. In the second (continued) tables,

concrete metrics are given in the notation of section 3 with the dimensions of transverse

space Z for each time-dependent case indicated in the first tables by (a) and (b).

For more than four branes, we show only simplified tables (tables 16–19) to save the

space because these systems do not have applications to cosmology and black hole physics,

and are not so interesting. They are included for the sake of completeness. In these

tables, we show which branes are involved, and dimension of the transverse space Z, and

the following columns with kM give the numbers of dimensions containing k branes. For

example, (2, 2, 2, 2, 1) in the first row of table 16 means that there are these numbers of

dimensions in which the world-volumes of 1 M-brane, 2 M-branes and so on lie. Though

these are not so explicit, they are useful to identify the explicit brane configurations with

higher numbers of branes from the systems with lower numbers step by step. In the

next column is given how many different time-dependent solutions are obtained according

to which brane we give the time dependence. For example, M5(3) in the first column of

table 16 means that there are only three kinds of different solutions when we choose different

time-dependent M5 branes. This is because there are same kind of M5 branes which give

the same time-dependent solutions. Which brane gives different time-dependent solutions

can be easily identified if we check the patterns of how many branes each coordinate of the

brane contains.

C Dynamical solution of KK-wave and KK-monopole

C.1 KK-wave

Here, we discuss the dynamical solution of of KK-wave. We start from (D−1)-dimensional

spacetime, and consider the KK 2-form FAB with a coupling to the dilaton. Replacing D
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M2M2 A = h
1/3

2̃
H

1/3
2 g0̃ = h−1

2̃
H−1

2

dim(Z) gα̃ gα

(a) 5 g1̃ = g2̃ = h−1

2̃
g3 = g4 = H−1

2

M2M5 A = h
1/3

2̃
H

2/3
5 g0 = h−1

2̃
H−1

5

dim(Z) gα̃ gα

(a) 4 g1̃ = h−1

2̃
H−1

5 , g6̃ = h−1

2̃
g2 = g3 = g4 = g5 = H−1

5

M2M5 A = h
2/3

5̃
H

1/3
5 g0 = h−1

5̃
H−1

5

dim(Z) gα̃ gα

(b) 4 g1̃ = h−1

5̃
H−1

2 g6 = H−1
2

g2̃ = g3̃ = g4̃ = g5̃ = h−1

5̃

M5M5 A = h
2/3

2̃
H

2/3
2 g0̃ = h−1

2̃
H−1

2

dim(Z) gα̃ gα

(a) 3 g1̃ = g2̃ = g3̃ = h−1

5̃
H−1

2 g6 = g7 = H−1
5

g4̃ = g5̃ = h−1

2̃

Table 9. (Continue) Concrete metrics for two M-branes.

0 1 2 3 4 5 6 7 8 9 10 Ĩ cos BH

M5 ◦ ◦ ◦ ◦ ◦ ◦ (a)
√ −

M5 ◦ ◦ ◦ ◦ ◦ ◦
M5 ◦ ◦ ◦ ◦ ◦ ◦
M5 ◦ ◦ ◦ ◦ ◦ ◦ (b) − √

(M5)3 M5 ◦ ◦ ◦ ◦ ◦ ◦
M5 ◦ ◦ ◦ ◦ ◦ ◦
M5 ◦ ◦ ◦ ◦ ◦ ◦ (c) − −
M5 ◦ ◦ ◦ ◦ ◦ ◦
M5 ◦ ◦ ◦ ◦ ◦ ◦
M2 ◦ ◦ ◦ (a)

√ √

M5 ◦ ◦ ◦ ◦ ◦ ◦ (b)
√ √

M2(M5)2 M5 ◦ ◦ ◦ ◦ ◦ ◦
M2 ◦ ◦ ◦ (a) − −
M5 ◦ ◦ ◦ ◦ ◦ ◦ (b) − −
M5 ◦ ◦ ◦ ◦ ◦ ◦
M2 ◦ ◦ ◦ (a)

√ √

(M2)2M5 M2 ◦ ◦ ◦
M5 ◦ ◦ ◦ ◦ ◦ ◦ (b)

√ √

M2 ◦ ◦ ◦ (a) − √

(M2)3 M2 ◦ ◦ ◦
M2 ◦ ◦ ◦

Table 10. Intersections of three M-branes.

with (D − 1) and substituting p = 0 into eqs. (2.3a), (2.3b), (2.3c), (2.6), and (A.1), we

find the electric 0-brane solution in (D − 1) dimensions written by

ds2
D−1 = −h

−D−4
D−3

w dt2 + h
1

D−3
w uij(Z) dzidzj , (C.1a)

eφ = h

q

D−2
2(D−3)

w , A(w) = (h−1
w − 1) dt, (C.1b)

Rij(Z) = 0, (C.1c)

hw(t, z) = Kw(t) + Hw(z), Kw(t) = Awt + Bw, △ZHw = 0, (C.1d)
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M53 A = h
2/3

5̃
H

2/3
5 H

2/3
5′

g0̃ = h−1

5̃
H−1

5 H−1
5′

dim(Z) gα̃ gα

(a) 1 g1̃ = g2̃ = g3̃ = h−1

5̃
H−1

5 H−1
5′

g6 = g7 = H−1
5

g4̃ = g5̃ = h−1

5̃
g8 = g9 = H−1

5′

(b) 3 g1̃ = h−1

5̃
H−1

5 H−1
5′

g2̃ = g3̃ = h−1

5̃
H−1

5 g6 = g7 = H−1
5 H−1

5′

g4̃ = g5̃ = h−1

5̃
H−1

5′

(c) 2 g1̃ = g2̃ = h−1

5̃
H−1

5 H−1
5′

g6 = H−1
5 H−1

5′

g3̃ = h−1

5̃
H−1

5 , g4̃ = h−1

5̃
H−1

5′
g7 = H−1

5

g5̃ = h−1

5̃
g8 = H−1

5′

M2M52 A = h
1/3

2̃
H

2/3
5 H

2/3
5′

g0 = h−1

2̃
H−1

5 H−1
5′

dim(Z) gα̃ gα

(a) 3 g1̃ = h−1

2̃
H−1

5 g3 = g4 = g5 = H−1
5 H−1

5′

g2̃ = h−1

2̃
H−1

5′
g6 = H−1

5 , g7 = H−1
5′

(b) 2 g1̃ = h−1

2̃
H−1

5 H−1
5′

g3 = g4 = H−1
5

g2̃ = h−1

2̃
g5 = g6 = H−1

5 H−1
5′

g7 = g8 = H−1
5′

M2M52 A = h
2/3

5̃
H

1/3
2 H

2/3
5 g0 = h−1

5̃
H−1

2 H−1
5

dim(Z) gα̃ gα

(c) 3 g1̃ = h−1

5̃
H−1

2 g2 = H−1
2 H−1

5

g3̃ = g4̃ = g5̃ = h−1

5̃
H−1

5 g7 = H−1
5

g6̃ = h−1

5̃

(d) 2 g1̃ = h−1

5̃
H−1

2 H−1
5 g2 = H−1

2

g3̃ = g4̃ = h−1

5̃
g7 = g8 = H−1

5

g5̃ = g6̃ = h−1

5̃
H−1

5

M22M5 A = h
1/3

2̃
H

1/3
2 H

2/3
5 g0 = h−1

2̃
H−1

2 H−1
5

dim(Z) gα̃ gα

(a) 3 g1̃ = h−1

2̃
H−1

5 g3 = H−1
2 H−1

5

g2̃ = h−1

2̃
g4 = H−1

2

g1̃ = h−1

5̃
H−1

2

M22M5 A = h
2/3

5̃
H

1/3
2 H

1/3
2′

g0 = h−1

5̃
H−1

2 H−1
2′

dim(Z) gα̃ gα

(b) 3 g1̃ = h−1

5̃
H−1

2

g3̃ = h−1

5̃
H−1

2′
g2 = H−1

2 , g4 = H−1
2′

g5̃ = g6̃ = g7̃ = h−1

5̃

M23 A = h
1/3

2̃
H

1/3
2 H

1/3
2′

g0 = h−1

2̃
H−1

2 H−1
2′

dim(Z) gα̃ gα

(a) 4 g1̃ = g2̃ = h−1

2̃
g3 = g4 = H−1

2

g5 = g6 = H−1
2′

Table 11. (Continue) Concrete metrics for three M-branes.

where F = dA(w), and Rij(Z) and △Z are the Ricci tensor, and the Laplace operator with

respect to the (D − 2)-dimensional metric uij, and Aw and Bw are integration constants.

Before going to D dimensions, we have to rescale the metric (C.1d) to put it in the D-

dimensional Einstein frame. This is given by the conformal transformation

ḡMN = h−1/(D−3)
w gMN . (C.2)
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M5 ◦ ◦ ◦ ◦ ◦ ◦ (a) − −
M5 ◦ ◦ ◦ ◦ ◦ ◦ (b) − −
M5 ◦ ◦ ◦ ◦ ◦ ◦
M5 ◦ ◦ ◦ ◦ ◦ ◦
M5 ◦ ◦ ◦ ◦ ◦ ◦ (c) − −
M5 ◦ ◦ ◦ ◦ ◦ ◦
M5 ◦ ◦ ◦ ◦ ◦ ◦

(M5)4 M5 ◦ ◦ ◦ ◦ ◦ ◦
M5 ◦ ◦ ◦ ◦ ◦ ◦ (d) − −
M5 ◦ ◦ ◦ ◦ ◦ ◦ (e) − −
M5 ◦ ◦ ◦ ◦ ◦ ◦
M5 ◦ ◦ ◦ ◦ ◦ ◦
M5 ◦ ◦ ◦ ◦ ◦ ◦ (f) − −
M5 ◦ ◦ ◦ ◦ ◦ ◦
M5 ◦ ◦ ◦ ◦ ◦ ◦
M5 ◦ ◦ ◦ ◦ ◦ ◦
M2 ◦ ◦ ◦ (a) − −
M5 ◦ ◦ ◦ ◦ ◦ ◦ (b) − −
M5 ◦ ◦ ◦ ◦ ◦ ◦
M5 ◦ ◦ ◦ ◦ ◦ ◦
M2 ◦ ◦ ◦ (c) − −
M5 ◦ ◦ ◦ ◦ ◦ ◦ (d) − −

M2 (M5)3 M5 ◦ ◦ ◦ ◦ ◦ ◦
M5 ◦ ◦ ◦ ◦ ◦ ◦
M2 ◦ ◦ ◦ (e) − −
M5 ◦ ◦ ◦ ◦ ◦ ◦ (f) − −
M5 ◦ ◦ ◦ ◦ ◦ ◦
M5 ◦ ◦ ◦ ◦ ◦ ◦ (g) − −

Table 12. Intersections of four M-branes I.

Gathering the above results, we find the D-dimensional metric of KK-wave [45]:

ds2 = gMNdxMdxN = −h−1
w dt2 + hw

[

dζ + (h−1
w − 1)dt

]2
+ uijdzidzj

= −dt2 + dζ2 + fw (dt − dζ)2 + uijdzidzj , (C.3)

where uij denotes the (D − 2)-dimensional metric depending only on the transverse coor-

dinate zi, while the function hw ≡ 1 + fw can depend on both t and zi.

Now we discuss the dynamical solution of Einstein equations for D-dimensional met-

ric (C.3). Substituting the metric (C.3) into then vacuum Einstein equations, we obtain

−△Zhw + (hw − 2)∂2
t hw = 0, (C.4a)

(1 − hw)∂2
t hw + △Zhw = 0, (C.4b)

∂t∂ihw = 0, (C.4c)

hw∂2
t hw −△Zhw = 0, (C.4d)

Rij(Z) = 0, (C.4e)

where △Z and Rij(Z) are the Laplace operator and the Ricci tensor with respect to the

metric uij, respectively. From (C.4c), we get

hw(t, z) = Kw(t) + Hw(z). (C.5)
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M54 A = (h5̃H5H5′H5′′ )
2/3 g0̃ = (h5̃H5H5′H5′′ )

−1

dim(Z) gα̃ gα

(a) 2 g1̃ = (h5̃H5H5′H5′′ )
−1, g2̃ = (h5̃H5H5′ )

−1 g6 = (H5H5′ )
−1

g3̃ = (h5̃H5H5′′ )
−1, g4̃ = (h5̃H5′H5′′ )

−1 g7 = (H5H5′′ )
−1

g5̃ = h−1

5̃
g8 = (H5′H5′′ )

−1

(b) 2 g1̃ = (h5̃H5H5′H5′′ )
−1 g4 = (H5H5′H5′′ )

−1

g2̃ = (h5̃H5H5′ )
−1, g3̃ = (h5̃H5H5′′ )

−1, g5 = H−1
5

g6̃ = (h5̃H5′ )
−1, g7̃ = (h5̃H5′′ )

−1 g8 = (H5′H5′′ )
−1

(c) 1 g1̃ = (h5̃H5H5′H5′′ )
−1, g2̃ = (h5̃H5H5′ )

−1 g5 = (H5H5′H5′′ )
−1

g3̃ = (h5̃H5H5′′ )
−1, g4̃ = (h5̃H5′H5′′ )

−1 g7 = H−1
5 , g8 = H−1

5′

g6̃ = h−1

5̃
g9 = H−1

5′′

(d) 1 g1̃ = g2̃ = (h5̃H5H5′H5′′ )
−1 g6 = (H5H5′H5′′ )

−1

g3̃ = (h5̃H5)−1, g4̃ = (h5̃H5′ )
−1 g7 = H−1

5 , g8 = H−1
5′

g5̃ = (h5̃H5′′ )
−1 g9 = H−1

5′′

(e) 1 g1̃ = g2̃ = (h5̃H5H5′H5′′ )
−1 g4 = (H5H5′ )

−1

g3̃ = (h5̃H5)−1, g6̃ = (h5̃H5′H5′′ )
−1 g5 = (H5H5′′ )

−1

g7̃ = (h5̃)
−1 g8 = H−1

5′
, g9 = H−1

5′′

(f) 2 g1̃ = g2̃ = (h5̃H5H5′H5′′ )
−1 g6 = (H5H5′ )

−1

g3̃ = (h5̃H5)−1, g4̃ = (h5̃H5′ )
−1 g7 = (H5H5′′ )

−1

g5̃ = (h5̃H5′′ )
−1 g8 = (H5′H5′′ )

−1

M2M53 A = h
1/3

2̃
(H5H5′H5′′ )

2/3 g0 = (h2̃H5H5′H5′′ )
−1

dim(Z) gα̃ gα

(a) 2 g1̃ = (h2̃H5H5′H5′′ )
−1 g3 = g4 = H−1

5 H−1
5′

g2̃ = h−1

2̃
g5 = g6 = H−1

5 H−1
5′′

g7 = g8 = H−1
5′

H−1
5′′

(c) 1 g1̃ = (h2̃H5H5′H5′′ )
−1 g3 = (H5H5′H5′′ )

−1, g4 = H−1
5 H−1

5′

g2̃ = h−1

2̃
g5 = H−1

5′
H−1

5′′
, g6 = H−1

5 H−1
5′′

g7 = H−1
5 , g8 = H−1

5′
, g9 = H−1

5′′

(e) 2 g1̃ = h−1

2̃
H−1

5 H−1
5′

g3 = g4 = (H5H5′H5′′ )
−1

g2̃ = h−1

2̃
H−1

5′′
g5 = H−1

5 H−1
5′′

, g6 = H−1
5′

H−1
5′′

g7 = H−1
5 , g8 = H−1

5′

M2M53 A = h
2/3

5̃
H

1/3
2 H

2/3
5 H

2/3
5′

g0 = (h5̃H2H5H5′ )
−1

dim(Z) gα̃ gα

(b) 2 g1̃ = (h5̃H2H5H5′ )
−1 g2 = H−1

2

g3̃ = g4̃ = h−1

5̃
H−1

5 g7 = g8 = H−1
5 H−1

5′

g5̃ = g6̃ = h−1

5̃
H−1

5′

(d) 1 g1̃ = (h5̃H2H5H5′ )
−1 g2 = H−1

2

g3̃ = h−1

5̃
(H5H5′ )

−1, g4̃ = h−1

5̃
H−1

5 g5 = H−1
5 H−1

5′

g6̃ = h−1

5̃
H−1

5′
, g7̃ = h−1

5̃
g8 = H−1

5 , g9 = H−1
5′

(f) 2 g1̃ = h−1

5̃
H−1

2 H−1
5 g2 = H−1

2 H−1
5′

g3̃ = g4̃ = h−1

5̃
H−1

5 H−1
5′

g6 = H−1
5 H−1

5′

g5̃ = h−1

5̃
H−1

5′
, g7̃ = h−1

5̃
g8 = H−1

5

(g) 2 g2̃ = h−1

5̃
H−1

2 g1 = H−1
2 H−1

5 H−1
5′

g3̃ = g4̃ = h−1

5̃
H−1

5 H−1
5′

g7 = H−1
5

g5̃ = h−1

5̃
H−1

5 , g6̃ = h−1

5̃
H−1

5′
g8 = H−1

5′

Table 13. (Continue) Concrete metrics for four M-branes I.

eqs. (C.4a), (C.4b), and (C.4d) are written by linear combinations of terms depending on

both t and zi, and those depending only on zi. Then, in order to satisfy eqs. (C.4a), (C.4b),

and (C.4d), we obtain

∂2
t Kw = 0, △ZHw = 0. (C.6)

We note that the function Kw(t) depends on the linear function of the time t. The Einstein
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0 1 2 3 4 5 6 7 8 9 10 Ĩ cos BH

M2 ◦ ◦ ◦ (a) − −
M2 ◦ ◦ ◦
M5 ◦ ◦ ◦ ◦ ◦ ◦ (b) − −
M5 ◦ ◦ ◦ ◦ ◦ ◦
M2 ◦ ◦ ◦ (c) − −
M2 ◦ ◦ ◦ (d) − −

(M2)2 (M5)2 M5 ◦ ◦ ◦ ◦ ◦ ◦
M5 ◦ ◦ ◦ ◦ ◦ ◦ (e) − −
M2 ◦ ◦ ◦ (f)

√ √

M2 ◦ ◦ ◦
M5 ◦ ◦ ◦ ◦ ◦ ◦ (g)

√ √

M5 ◦ ◦ ◦ ◦ ◦ ◦
M2 ◦ ◦ ◦ (a) − −

(M2)3 M5 M2 ◦ ◦ ◦
M2 ◦ ◦ ◦
M5 ◦ ◦ ◦ ◦ ◦ ◦ (b) − −
M2 ◦ ◦ ◦ (a) − −
M2 ◦ ◦ ◦

(M2)4 M2 ◦ ◦ ◦
M2 ◦ ◦ ◦

Table 14. Intersections of four M-branes II.

equations with the metric (C.3) are reduced to

hw(t, z) = Kw(t) + Hw(z),

∂2
t Kw = 0,

△ZHw = 0,

Rij(Z) = 0. (C.7)

Especially, for the case of uij = δij , we find the solution of the KK wave as

ds2 = −dt2 + dζ2 + fw (dt − dζ)2 + uijdzidzj

fw(t, z) ≡ hw(t, z) − 1, (C.8)

with

hw(t, z) = Kw(t) + Hw(z),

Kw(t) = Awt + Bw (C.9)

Hw(z) = Cw +
∑

k

Qw,k

|z − zk|D−4
,

where Aw, Bw, Cw, Qw are constant parameters and zk represent the positions of the

branes in Z space.

C.2 KK-monopole

Next we discuss the dynamical solution of KK-monopole [35, 36]. In the reduced (D − 1)-

dimensional picture, it has to be a magnetically charged (D−5)-brane with a 2-form F(D−3).
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M22M52 A = (h2̃H2)1/3(H5H5′ )
2/3 g0̃ = (h2̃H2H5H5′ )

−1

dim(Z) gα̃ gα

(a) 1 g1̃ = (h2̃H5H5′ )
−1 g2 = (H2H5H5′ )

−1, g3 = (H5H5′ )
−1,

g8 = h−1

2̃
g4 = g5 = H−1

5 , g6 = g7 = H−1
5′

g9 = H−1
2

(c) 2 g1̃ = (h2̃H5H5′ )
−1 g2 = g3 = (H5H5′ )

−1

g8 = h−1

2̃
g4 = (H2H5)−1, g5 = H−1

5

g6 = (H2H5′ )
−1, g7 = H−1

5′

(d) 2 g4̃ = (h2̃H5H)−1 g1 = (H2H5H5′ )
−1

g6̃ = (h2̃H5′ )
−1, g2 = g3 = (H5H5′ )

−1

g5 = H−1
5 , g7 = H−1

5′
, g8 = H−1

2

(f) 3 g4̃ = (h2̃H5)−1 g1 = g2 = g3 = (H5H5′ )
−1

g6̃ = (h2̃H5′ )
−1, g5 = (H2H5)−1, g7 = (H2H5′ )

−1

M22M52 A = h
2/3

5̃
(H2H2′ )

1/3H
2/3
5 g0 = (h5̃H2H2′H5)−1

dim(Z) gα̃ gα

(b) 1 g1̃ = (h5̃H2H5)−1 g6 = g7 = H−1
5

g2̃ = (h5̃H2′H5)−1 g8 = H−1
2

g3̃ = (h5̃H5)−1, g4̃ = g5̃ = h−1

5̃
g9 = H−1

2′

(e) 2 g1̃ = (h5̃H2H5)−1 g6 = (H2H5)−1

g2̃ = g3̃ = (h5̃H5)−1 g7 = H−1
5

g4̃ = (h5̃H2′ )
−1, g5̃ = h−1

5̃
g8 = H−1

2

(g) 3 g1̃ = g2̃ = g3̃ = (h5̃H5)−1 g6 = (H2H5)−1

g4̃ = (h5̃H2)−1, g5̃ = (h5̃H2′ )
−1 g7 = (H2′H5)−1

M23M5 A = h
1/3

2̃
(H2H2′H5)2/3 g0 = (h2̃H2H2′H5)−1

dim(Z) gα̃ gα

(a) 2 g1̃ = (h2̃H5)−1 g3 = (H2H5)−1, g4 = H−1
2

g2̃ = h−1

2̃
g5 = (H2′H5)−1, g6 = H−1

2′

g7 = g8 = H−1
5

M23M5 A = h
2/3

5̃
(H2H2′H2′′ )

1/3 g0 = (h5̃H2H2′H2′′ )
−1

dim(Z) gα̃ gα

(b) 2 g1̃ = (h5̃H2)−1, g3̃ = (h5̃H2′ )
−1 g2 = H−1

2

g5̃ = (h5̃H2′′ )
−1 g4 = H−1

2′

g7̃ = g8̃ = h−1

5̃
g6 = H−1

2′′

M24 A = (h2̃H2H2′H2′′ )
2/3 g0 = (h2̃H2H2′H2′′ )

−1

dim(Z) gα̃ gα

(a) 2 g3 = g4 = H−1
2

g1̃ = g2̃ = h−1

2̃
g5 = g6 = H−1

2′

g7 = g8 = H−1
2′′

Table 15. (Continue) Concrete metrics for four M-branes II.

Replacing D with (D−1) and substituting p = (D−5) into eqs. (2.3a), (2.3b), (2.3c), (2.6),

and (A.1), the electric (D − 5)-brane solution in (D − 1) dimensions can be written as

ds2
(D−1) = h

− 1
D−3

m qµνdxµdxν + h
D−4
D−3
m uij(Z)dzidzj ,

eφ = h

q

(D−2)
2(D−3)

m , F(D−3) = d(h−1
m ) ∧√−qdx0 ∧ · · · ∧ dxD−5,

Rµν(X) = 0, Rij(Z) = 0,

hm(x, z) = Km(x) + Hm(z), DµDνKm = 0,△ZHm = 0, (C.10)

where Rµν(X), Dµ and q are Ricci tensor, covariant derivative, determinant constructed

from the (D − 4)-dimensional metric qµν which depends only on the coordinate xµ, Rij(Z)
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branes dim(Z) 1M 2M 3M 4M 5M Ĩ(#) cos BH

1 2 2 2 2 1 M5(3) − −
(M5)5 1 1 4 2 0 2 M5(2) − −

2 0 2 4 1 1 M5(2) − −

1 3 1 3 2 0
M2(1) − −
M5(2) − −

2 0 4 2 2 0
M2(1) − −

M2(M5)4
M5(1) − −

1 1 6 0 1 1
M2(1) − −
M5(1) − −

1 2 3 3 0 1
M2(1) − −
M5(2) − −

1 3 3 2 1 0
M2(2) −

(M2)2(M5)3
M5(2) − −

2 1 3 4 0 0
M2(1) − −
M5(2) − −

1 4 3 2 0 0
M2(2) − −

(M2)3(M5)2
M5(1) − −

2 1 6 1 0 0
M2(2) − −
M5(1) − −

(M2)4(M5)1 1 5 4 0 0 0
M2(1) − −
M5(1) − −

Table 16. Intersections of five M-branes.

branes dim(Z) 1M 2M 3M 4M 5M 6M Ĩ(#) cos BH

1 0 3 4 0 0 2 M5(1) − −
(M5)6 1 1 2 2 2 1 1 M5(3) − −

2 0 0 4 3 0 1 M5(1) − −

M2(M5)5 1 1 2 4 1 0 1
M2(1) − −
M5(2) − −

1 1 4 2 1 1 0
M2(2) − −
M5(1) − −

(M2)2(M5)4 1 2 2 2 3 0 0
M2(1) − −
M5(2) − −

2 0 2 4 2 0 0
M2(1) − −
M5(1) − −

1 2 3 3 1 0 0
M2(2) − −

(M2)3(M5)3 M5(2) − −
2 0 3 5 0 0 0

M2(1) − −
M5(1) − −

(M2)4(M5)2 1 2 5 2 0 0 0
M2(2) − −
M5(1) − −

Table 17. Intersections of six M-branes.

and △Z are Ricci tensor, Laplace operator with respect to the three-dimensional metric

uij which depends only on the coordinate zi. Before going to D dimensions, we have to

rescale the metric (C.10) to put it in the D-dimensional Einstein frame. Then we use the

conformal transformation

ḡMN = h−1/(D−3)
m gMN . (C.11)

Collecting the above results, we find the D-dimensional metric of KK-monopole:

ds2 = gMNdxMdxN
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branes dim(Z) 1M 2M 3M 4M 5M 6M 7M Ĩ(#) cos BH

1 1 0 4 0 3 0 1 M5(2) − −
(M5)7

1 0 3 0 4 0 1 1 M5(2) − −
1 0 0 7 0 0 0 2 M5(2) − −
2 0 0 0 7 0 0 1 M5(2) − −

M2(M5)6 1 1 0 4 3 0 0 1
M2(1) − −
M5(1) − −

1 1 2 4 1 1 0 0
M2(2) − −
M5(1) − −

(M2)3(M5)4 1 1 3 1 4 0 0 0
M2(1) − −
M5(2) − −

2 0 0 6 2 0 0 0
M2(1) − −
M5(1) − −

(M2)4(M5)3 1 1 3 4 1 0 0 0
M2(2) − −
M5(1) − −

Table 18. Intersections of seven M-branes.

branes dim(Z) 1M 2M 3M 4M 5M 6M 7M 8M Ĩ(#) cos BH

M2(M5)7 1 1 0 0 7 0 0 0 1
M2(1) − −
M5(1) − −

1 0 4 0 5 0 0 0 0
M2(1) − −

(M2)4(M5)4
M5(1) − −

1 1 0 6 1 1 0 0 0
M2(2) − −
M5(1) − −

Table 19. Intersections of eight M-branes.

= qµν(X)dxµdxν + h−1
m

(

dζ + A(m)
i dzi

)2
+ hmuij(Z)dzidzj , (C.12)

where qµν is (D−4)-dimensional metric depends only on the coordinate xµ, and uij denotes

the three-dimensional metric depends only on the transverse coordinate zi, and the function

hm depends on xµ as well as zi, and relation between hm and A(m)
i is

Fij ≡ ∂iA(m)
j − ∂jA(m)

i = −ǫijk ∂khm. (C.13)

Substituting the metric (C.12) into the D-dimensional vacuum Einstein equations,

we obtain

Rµν(X) − h−1
m DµDνhm = 0, (C.14a)

h−1
m ∂µ∂ihm = 0, (C.14b)

h−2
m △Xhm = 0, (C.14c)

A(m)
i h−2

m △Xh + A(m)
i h−3

m △Zhm = 0, (C.14d)

Rij(Z) − 1

2

(

uij − h−2
m A(m)

i A(m)
j

)

△Xhm − 1

2
h−1

m uij△Zhm = 0, (C.14e)

where Dµ, △X, Rµν(X) are covariant derivative, Laplace operator, Ricci tensor with respect

to the metric qµν , and △Z, Rij(Z) are Laplace operator, Ricci tensor with respect to the

metric uij, and we assume

∂µA(m)
i = 0. (C.15)
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Using eq. (C.14b), we get

hm(x, z) = Km(x) + Hm(z). (C.16)

Equations (C.14a), (C.14d), (C.14e) are written by the combination of the term de-

pending not only on xα but zi, and depending only on zi. Then, in order to satisfy

eqs. (C.14a), (C.14b), and (C.14c), we choose

DµDνK = 0, △ZH = 0, Rαβ(X) = 0, Rij(Z) = 0. (C.17)

The Einstein equations in the metric (C.12) are then reduced to

hm(x, z) = Km(x) + Hm(z),

DµDνKm = 0,

△ZHm = 0,

Rµν(X) = 0, Rij(Z) = 0. (C.18)

For qµν = ηµν , uij = δij , we can obtain the solution of Einstein equation explicitly

ds2 = ηµνdxµdxν + hm(dzi)2 + h−1
m

(

dζ + A(m)
i dzi

)2
, (C.19)

with

hm(x, z) = Km(x) + Hm(z),

Km(x) = Am (µ) xµ + Bm,

Hm(z) = Cm +
∑

k

Qm, k

|z − zk|
, (C.20)

where Am (µ), Bm, Cm, Qm, k, zk’s are integration constants.

D Intersecting branes with M-waves and KK-monopoles

A complete list for static brane system with M-waves and KK-monopoles are given in [34].

Hence we pick up only interesting cases in which one can discuss cosmology or a black

hole (object) in table 20. In the table, circles indicate where the brane world-volumes

enter, ζ represents the coordinate of the KK-monopole, and the time-dependent branes

are indicated by (a) and (b) and so on for different solutions. When the solutions can be

used for cosmology and black hole physics, they are marked in the corresponding columns.

The applications of these solutions to cosmology and black hole physics are discussed in

section 5.
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0 1 2 3 4 5 6 7 8 9 10 Ĩ cos BH

M2 ◦ ◦ ◦ (a) − √

M2 ◦ ◦ ◦
M2-M2-KKM KKM ◦ ◦ ◦ ◦ ◦ ◦ ◦ ζ A(m)

8 A(m)
9 A(m)

10 (b) − √

M2 ◦ ◦ ◦ (c)
√ −

M2 ◦ ◦ ◦ (d)
√ −

KKM ◦ ζ A(m)
2 ◦ ◦ ◦ ◦ ◦ ◦ A(m)

9 A(m)
10 (e)

√ −
M2 ◦ ◦ ◦ (a)

√ √

M2-M5-W M5 ◦ ◦ ◦ ◦ ◦ ◦ (b)
√ √

W ◦ ζ (c)
√ √

M2 ◦ ◦ ◦ (a)
√ √

M5 ◦ ◦ ◦ ◦ ◦ ◦ (b)
√ √

M2-M5-KKM KKM ◦ ◦ ◦ ◦ ◦ ◦ ◦ ζ A(m)
8 A(m)

9 A(m)
10 (c)

√ √

M2 ◦ ◦ ◦ (d)-1, 2
√ −

M5 ◦ ◦ ◦ ◦ ◦ ◦ (e)-1, 2
√ −

KKM ◦ ζ A(m)
2 ◦ ◦ ◦ A(m)

6 ◦ ◦ ◦ A(m)
10 (f)-1, 2

√ −
M2 ◦ ◦ ◦ (a)

√ √

M2-M5- M5 ◦ ◦ ◦ ◦ ◦ ◦ (b)
√ √

W-KKM W ◦ ζ1 (c)
√ √

KKM ◦ ◦ ◦ ◦ ◦ ◦ ◦ ζ7 A(m)
8 A(m)

9 A(m)
10 (d)

√ √

M5 ◦ ◦ ◦ ◦ ◦ ◦ (a) − √

M5-M5-W M5 ◦ ◦ ◦ ◦ ◦ ◦
W ◦ ζ (b) − √

M5 ◦ ◦ ◦ ◦ ◦ ◦ (a)
√ −

M5-M5-KKM M5 ◦ ◦ ◦ ◦ ◦ ◦ (b)
√ −

KKM ◦ ◦ ◦ ◦ ◦ ◦ ζ A(m)
7 ◦ A(m)

9 A(m)
10 (c)

√ −
M5 ◦ ◦ ◦ ◦ ◦ ◦ (a)

√ −
M5-M5- M5 ◦ ◦ ◦ ◦ ◦ ◦

KKM-KKM KKM ◦ ◦ ◦ ◦ ◦ ◦ ζ6 A(m)
7 ◦ A(m)

9 A(m)
10 (b)

√ −
KKM ◦ ◦ ◦ ◦ ζ4 B(m)

5 ◦ ◦ ◦ B(m)
9 B(m)

10

Table 20. Intersecting M-branes with M-wave and KK-monopole. Here we show only the inter-

esting cases which can be applied to cosmology or a black hole system. The labelling (a), (b), · · ·
in the column “Ĩ” denotes which brane (or wave, KK-monopole) is time dependent. In the second

case of M2-M5-KKM system, there are two possibilities which space dimensions can be our three

space, i.e., the case 1: [(ξ1, ξ2, ξ3) = (x3, x4, x5)] and the case 2: [(ξ1, ξ2, ξ3) = (x7, x8, x9)]. We

show them by (d)-1 (d)-2, (e)-1, (e)-2, or (f)-1, (f)-2.
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[2] H. Lü, C.N. Pope, E. Sezgin and K.S. Stelle, Stainless super p-branes,

Nucl. Phys. B 456 (1995) 669 [hep-th/9508042] [SPIRES].
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si muove, Nucl. Phys. B 732 (2006) 118 [hep-th/0502077] [SPIRES].

[14] P. Binetruy, M. Sasaki and K. Uzawa, Dynamical D4-D8 branes in supergravity,

arXiv:0712.3615 [SPIRES].
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[39] M. Cvetič, H. Lü, C.N. Pope and J.F. Vazquez-Poritz, AdS in warped spacetimes,

Phys. Rev. D 62 (2000) 122003 [hep-th/0005246] [SPIRES].

[40] F. Arroja and K. Koyama, Moduli instability in warped compactification: 4D effective theory

approach, Class. Quant. Grav. 23 (2006) 4249 [hep-th/0602068] [SPIRES].

[41] S.B. Giddings and A. Maharana, Dynamics of warped compactifications and the shape of the

warped landscape, Phys. Rev. D 73 (2006) 126003 [hep-th/0507158] [SPIRES].

[42] A.R. Frey, G. Torroba, B. Underwood and M.R. Douglas, The universal Kähler modulus in

warped compactifications, JHEP 01 (2009) 036 [arXiv:0810.5768] [SPIRES].

[43] F. Arroja, On the four-dimensional effective theories in brane- worlds, arXiv:0812.1431

[SPIRES].

– 40 –

http://dx.doi.org/10.1016/j.nuclphysb.2006.05.013
http://arxiv.org/abs/hep-th/0306186
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0306186
http://dx.doi.org/10.1016/j.physletb.2004.05.028
http://arxiv.org/abs/hep-th/0404082
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0404082
http://dx.doi.org/10.1103/PhysRevD.72.044029
http://arxiv.org/abs/hep-th/0506216
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0506216
http://arxiv.org/abs/hep-th/9803116
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9803116
http://dx.doi.org/10.1088/1126-6708/2005/07/061
http://arxiv.org/abs/hep-th/0504193
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0504193
http://dx.doi.org/10.1016/0370-2693(96)01166-5
http://arxiv.org/abs/hep-th/9605077
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9605077
http://dx.doi.org/10.1016/0550-3213(96)00423-3
http://arxiv.org/abs/hep-th/9604179
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9604179
http://dx.doi.org/10.1016/S0550-3213(96)00692-X
http://arxiv.org/abs/hep-th/9609212
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9609212
http://dx.doi.org/10.1016/0550-3213(96)00328-8
http://arxiv.org/abs/hep-th/9604035
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9604035
http://arxiv.org/abs/hep-th/9807171
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9807171
http://dx.doi.org/10.1016/S0550-3213(97)00151-X
http://arxiv.org/abs/hep-th/9612095
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9612095
http://dx.doi.org/10.1088/0264-9381/14/10/005
http://arxiv.org/abs/hep-th/9704120
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9704120
http://dx.doi.org/10.1103/PhysRevLett.51.87
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA,51,87
http://dx.doi.org/10.1016/0550-3213(83)90462-5
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B226,29
http://dx.doi.org/10.1088/0264-9381/17/15/306
http://arxiv.org/abs/hep-th/9904124
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9904124
http://dx.doi.org/10.1088/0264-9381/19/23/315
http://arxiv.org/abs/hep-th/0208108
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0208108
http://dx.doi.org/10.1103/PhysRevD.62.122003
http://arxiv.org/abs/hep-th/0005246
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0005246
http://dx.doi.org/10.1088/0264-9381/23/12/019
http://arxiv.org/abs/hep-th/0602068
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0602068
http://dx.doi.org/10.1103/PhysRevD.73.126003
http://arxiv.org/abs/hep-th/0507158
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0507158
http://dx.doi.org/10.1088/1126-6708/2009/01/036
http://arxiv.org/abs/0810.5768
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0810.5768
http://arxiv.org/abs/0812.1431
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.1431


J
H
E
P
0
6
(
2
0
0
9
)
0
5
1

[44] K.-I. Maeda, N. Ohta, M. Tanabe and R. Wakebe, Supersymmetric intersecting branes in

time-dependent backgrounds, arXiv:0903.3298 [SPIRES].

[45] H.W. Brinkmann, On Riemann spaces conformal to Euclidean space, Proc. Nat. Acad. Sci. 9

(1923) 1.

– 41 –

http://arxiv.org/abs/0903.3298
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.3298

	Introduction
	Solutions of dynamical intersecting branes
	Classification of dynamical intersecting M-branes
	Dynamical intersecting M-branes
	Spacetime structure of the intersecting branes

	Applications to cosmology and black holes
	Cosmology
	Time-dependent black holes

	Intersecting M-branes with M-waves and KK-monopoles
	Cosmology
	Time-dependent black holes

	Lorentz invariance and the lower-dimensional effective theory
	Concluding remarks
	Dynamical solution of a single p-brane
	Classification of intersecting branes
	Dynamical solution of KK-wave and KK-monopole
	KK-wave
	KK-monopole

	Intersecting branes with M-waves and KK-monopoles

